ࡱ> Og_ $bjbj,E,E .6N/N/J'"&"&"&"&"&&&&<8&ΐ' )()))+*,1$P3E{ӍӍӍӍӍӍ$fn"&d4++d4d4"&"&))4DDDd4, "&)"&)E{Dd4E{DDr=x)]3?zt41{0ΐu( Bh=x"&=xd4d4Dd4d4d4d4d4Dd4d4d4ΐd4d4d4d4d4d4d4d4d4d4d4d4d4 $: @Compositional Stochastic Model Checking Probabilistic Automata via Assume-guarantee Reasoning Yang Liu1,2,* Rui Li1 1School of Information Engineering, Nanjing University of Finance & Economics, Nanjing, Jiangsu 210046, China 2School of Computing, National University of Singapore, Singapore 117417, Singapore *Corresponding author. Email: yliu@nufe.edu.cn ABSTRACT Stochastic model checking is the extension and generalization of the classical model checking. Compared with classical model checking, stochastic model checking faces more severe state explosion problem, because it combines classical model checking algorithms and numerical methods for calculating probabilities. For dealing with this, we first apply symmetric assume-guarantee rule symmetric (SYM) for two-component systems and symmetric assume-guarantee rule for n-component systems into stochastic model checking in this paper, and propose a compositional stochastic model checking framework of probabilistic automata based on the NL* algorithm. It optimizes the existed compositional stochastic model checking process to draw a conclusion quickly, in cases the system model does not satisfy the quantitative properties. We implement the framework based on the PRISM tool, and several large cases are used to demonstrate the performance of it. Keywords: Stochastic model checking, assume-guarantee reasoning, symmetric assume-guarantee rule, learning algorithm, probabilistic automata 1. INTRODUCTION Formal verification can reveal the unexposed defects in a safety-critical system. As a prominent formal verification technique, model checking is an automatic and complete verification technique of finite state systems against correctness properties, which was pioneered respectively by Clarke and Emerson [1] and by Queille and Sifakis [2] in the early 1980s. Whereas model checking techniques focus on the absolute correctness of systems, in practice such rigid notions are hard, or even impossible, to ensure. Instead, many systems exhibit stochastic aspects [3] which are essential for among others: modeling unreliable and unpredictable system behavior (message garbling or loss), model-based performance evaluation (i.e., estimating system performance and dependability) and randomized algorithms (leader election or consensus algorithms). Automatic formal verification of stochastic systems by model checking is called stochastic model checking or probabilistic model checking [4]. Stochastic model checking algorithms rely on a combination of model checking techniques for classical model checking and numerical methods for calculating probabilities. So, stochastic model checking faces more severe state explosion problem, compared with classical model checking [5]. There are some works to deal with this problem through bounded probabilistic model checking [6], abstraction refinement [7], compositional verification [8] and so on. The crucial notion of compositional verification is divide and conquer. It can decompose the whole system into separate components and conquer each component separately. The compositional verification techniques include assume-guarantee reasoning [9], contract-based methods [10] and invariant-based methods [11]. This paper focuses on assume-guarantee reasoning, which is an automatic method of compositional verification. To account for the relationship between the whole system and its different components, assume-guarantee reasoning gives some rules, which can change the global verification of a system into local verification of individual components. Theoretically speaking, applying the assume-guarantee reasoning into stochastic model checking is a feasible way to solve the state explosion problem. There is some research work done in this direction [1215]. We argue that applying the assume-guarantee reasoning into stochastic model checking should solve the following four issues, which is named as AG-SMC problem: (1) How to generate appropriate assumptions. (2) How to check the assume-guarantee triple. (3) How to construct a counterexample. (4) How to verify a stochastic system composed of n (ne"2) components. 1.1. Related Work According to the generation type of assumptions, we divided the existed work into two categories. 1.1.1. Manual interactive assumption generation On the existing theory of Markov Decision Process (MDP) model of combinatorial analysis [16], Kwiatkowska et al. [17] first gives out assume-guarantee reasoning for verifying probabilistic automaton (PA) model, including asymmetric assumption-guarantee rule (ASYM), circular assumption-guarantee rule (CRIC) and asynchronous assumption-guarantee rule (ASYNC). It solves the AG-SMC problem as follows: (1) It generates the assumptions through the manual interactive method. (2) In the triple of the form 'A'e"PAM'P'e"PG, system model M is a PA, the assumption 'A'e"PA and guarantee 'P'e"PG are probabilistic safety properties, represented by deterministic finite automaton (DFA). When system component M satisfies assumptions A with minimum probability PA, it will be able to satisfy property P with minimum probability PG. Checking the triple can be reduced to multi-objective model checking [18], which is equivalent to a linear programming (LP) problem. (3) It does not involve to construct the counterexamples. (4) It verifies a stochastic system composed of n e" 2 components through multi-component asymmetric assume-guarantee rule (ASYM-N). The core idea of ASYM-N rule is similar to CRIC rule, i.e., the component M1 satisfies the guarantee 'A1'e"PAM1, then the guarantee 'A1'e"PAM1 as the assumption of the component M2, let the component M2 can satisfy the guarantee 'A2'e"PAM2,& , until the component Mn that satisfies the assumption 'An 1'e"PAMn-1 can satisfy the guarantee 'P'e"PG. If all above-mentioned conditions hold, the entire system model M1Q%M2Q%Q%Mn will satisfy the guarantee 'P'e"PG. 1.1.2. Automated assumption generation Bouchekir and Boukala [19], He et al. [20], Komuravelli et al. [21], Feng et al. [22] and [23] are the automated assumption generation methods for solving the AG-SMC problem. They can be divided into the following three kinds further. 1.1.2.1. Learning-based assumption generation. Based on the learning-based assume-guarantee reasoning (LAGR) technology and the ASYM rule proposed in Segala [16], Feng et al. [22] proposes L*-based learning framework for PA model, which can be used to verify whether the given PA model satisfies the probabilistic safety property. Feng et al. [22] uses the cases to demonstrate the performance of its method, including the clientserver, sensor network and the randomized consensus algorithm. For the AG-CSMC problem, Segala [16] can be specifically described in the following four aspects: (1) Through the L* learning algorithm, the process of generating an appropriate assumption 'A'e"PA is fully automated, i.e., we need to generate a closed and consistent observation table through membership queries, to generate a conjectured assumption, and then verify the correctness of the assumption through equivalence queries. (2) It checks the assume-guarantee triple through multi-objective model checking [18]. (3) In the whole learning process, Feng et al. [22] adopts the method proposed in Han et al. [24] to generate probabilistic counterexamples for refining the current assumption, i.e., the PRISM [25] is used to obtain the error state nodes in the model, and then the probabilistic counterexamples are constructed by using Eppstein s [26] algorithm. (4) The verification problem of a stochastic system composed of n e" 2 components is not solved. Feng et al. [23] makes further research based on Feng et al. [22] and uses several large cases to demonstrate the performance of it, including clientserver, sensor network, randomized consensus algorithm and Mars Exploration Rovers (MER). For the AG-CSMC problem, compared with Feng et al. [23] and Feng et al. [22], the contribution of Feng et al. [23] is reflected in the better solution of the first sub-problem and the solution of the fourth sub-problem, which will be illustrated in the following two aspects: (1) Feng et al. [23] compares the assumption generation process between the L* learning algorithm and the NL* learning algorithm, and finds that NL* often needs fewer membership and equivalence queries than L* in large cases. (2) Based on Segala [16], Feng et al. [23] uses the ASYM-N rule to propose a learning framework for compositional stochastic model checking, and uses it to verify the multi-component stochastic system. So far, in the learning-based assumption generation method, four sub-problems of AG-CSMC problem have been solved basically. 1.1.2.2. Symbolic learning-based assumption generation. One deficiency of learning-based assumption generation method is that the learning framework is sound but incomplete. Based on ASYM rule, He et al. [20] proposes an assume-guarantee rule containing weighted assumption for the first time, and provides a sound and complete learning framework, which can verify whether the probabilistic safety properties are satisfied on the MDP model. Through randomized consensus algorithm, wireless LAN protocol, FireWire protocol and randomized dining philosophers, He et al. [20] demonstrates the performance of its method. For the AG-CSMC problem, He et al. [20] can be specifically described in the following four aspects: (1) The weighted assumption can be represented by Multi-terminal Binary Decision Diagrams (MTBDD). Based on the L* learning algorithm, He et al. [20] proposes an MTBDD learning algorithm to automatically generate the weighted assumption, which is represented by a k-Deterministic Finite Automaton (k-DFA). MTBDD learning algorithm can make membership queries on binary strings of arbitrary lengths and answer membership queries on valuations over fixed variables by the teacher. (2) Through the weighted extension of the classical simulation relation, He et al. [20] presents a verification method of the assume-guarantee triple containing the weighted assumption. (3) Similarly to Feng et al. [22], He et al. [20] also constructs the necessary probabilistic counterexamples in the learning process through Han et al. [24]. (4) The verification problem of a stochastic system composed of n e" 2 components is not solved. In Bouchekir and Boukala [19], the method realizes automatic assumption generation through the Symbolic Learning-based Assume-Guarantee Reasoning technology, also known as the Probabilistic Symbolic Compositional Verification (PSCV). The PSCV method provides a sound and complete symbolic assume-guarantee rule to verify whether the MDP model satisfies the Probabilistic Computation Tree Logic (PCTL) property. It is a new approach based on the combination of assume-guarantee reasoning and symbolic model checking techniques. Bouchekir and Boukala [19] uses randomized mutual exclusion, clientserver, randomized dining philosophers, randomized self-stabilizing algorithm and Dice to demonstrate the performance of its method. For the AG-CSMC problem, Bouchekir and Boukala [19] can be specifically described in the following four aspects: (1) Appropriate assumptions are automatically generated by symbolic MTBDD learning algorithm, and represented by interval MDP (IMDP), thus ensuring the completeness of symbolic assume-guarantee rule. Moreover, In addition, to reduce the size of the state space, The PSCV method encodes both system components and assumptions implicitly using compact data structures, such as BDD or MTBDD. (2) Bouchekir and Boukala [19] uses the method in He et al. [20] to verify assume-guarantee triple. (3) To refine assumptions, the PSCV method [27] uses the causality method to construct counterexamples, i.e., it uses K* algorithm [28] in the DiPro tool to construct counterexamples, and applies the algorithms in Debbi and Bourahla [29] to construct the most indicative counterexample. (4) Verification of a stochastic system composed of n e" 2 components is not involved. 1.1.2.3. Assumption generation based on abstraction-refinement. The method in Komuravelli et al. [21] is similar to Counterexample Guided Abstraction Refinement (CEGAR) [30]. It uses the Assume-Guarantee Abstraction Refinement technology to propose an assume-guarantee compositional verification framework for Labeled Probabilistic Transition Systems (LPTSes), which can verify whether the given LPTS model satisfies the safe-PCTL property. Komuravelli et al. [21] uses the clientserver, MER and wireless sensor network to demonstrate the performance of its method. For the AG-CSMC problem, Komuravelli et al. [21] can be specifically described in the following four aspects: (1) The method can use tree counterexamples from checking one component to refine the abstraction of another component. Then, it uses the abstraction as the assumptions for assume-guarantee reasoning, represented by LPTS. (2) It uses a strong simulation relationship to check the assume-guarantee triple; (3) The process of constructing tree counterexample can be reduced to check the Satisfiability Modulo Theories problem, and then solve it through Yices [31]. (4) It also verifies an n-component stochastic system (n e" 2) by the ASYM-N rule. 1.2. Our Contribution This paper presents some improvements based on the probabilistic assume-guarantee framework proposed in Feng et al. [23]. On one hand, our optimization is to verify each membership and equivalence query, to seek a counterexample, which can prove the property is not satisfied. If the counterexample is not spurious, the generation of the assumptions will stop, and the verification process will also terminate immediately. On the other hand, a potential shortage of the ASYM displays that the sole assumption A about M1 is present, but the additional assumption about M2 is nonexistent. We thus apply the SYM rule to the compositional verification of PAs and extend the rule to verify an n-component system (n e" 2). Through several large cases, it is shown that our improvements are feasible and efficient. 1.3. Paper Structure The rest of the paper is organized as follows. Section 2 introduces the preliminaries used in this paper, which include PAs, model checking and the NL* algorithm. Section 3 presents a compositional stochastic model checking framework based on the SYM rule and optimizes the learning framework. Then, the framework is extended to an n-component system (n e" 2) in Section 4. Section 5 develops a prototype tool for the framework, and compares it with Feng et al. [23] by several large cases. Finally, Section 6 concludes the paper and presents direction for future research. 2. BACKGROUND 2.1. Probabilistic Automata Probabilistic automata [3, 17, 32, 33] can model both probabilistic and nondeterministic behavior of systems, which is a slight generalization of MDPs. The verification algorithms for MDPs can be adapted for PAs. In the following, Dist(V) is defined as the set of all discrete probability distributions over a set V. v is defined as the point distribution on v " V. 1 2 " Dist(V1 V2) is the product distribution of 1 " Dist(V1) and 2 " Dist(V2). Definition 1. (probabilistic automaton) A probabilistic automaton (PA) is a tuple  EMBED Equation.DSMT4  where V is a set of states,  EMBED Equation.DSMT4  is an initial state, M is an alphabet for all the action, M " V (M " {}) Dist(V) is a probabilistic transition relation.  is an invisible action, and L:V ! 2AP is a labeling function mapping each state to a set of atomic propositions taken from a set AP. In any state v of a PA M, we use the transition  EMBED Equation.DSMT4  to denote that (v, , ) " M, where  " M " {} is an action label.  is a probability distribution over state v. All transitions are nondeterministic, and it will make a random choice according to the distribution . A trace through M is a (finite or infinite) sequence  EMBED Equation.DSMT4  where  EMBED Equation.DSMT4 , and for each i e" 0,  EMBED Equation.DSMT4  is a transition and i (vi+1) > 0. The sequence of actions 0, 1, . . . , after removal of any , from a trace t is also called a path. An adversary  is sometimes referred to as scheduler, policy, or strategy, which maps any finite path to a sub-distribution over the available transitions in the last state of the path. This paper focuses on are finite-memory adversaries, which store information about the history in a finite-state automaton (see Baier and Katoen [3] Definition 10.97; pp. 848). We define  EMBED Equation.DSMT4  as the set of all traces through M under the control of adversary , and AdvM as the set of all potential adversaries for M. For an adversary, we define a probability space  EMBED Equation.DSMT4  on  EMBED Equation.DSMT4 , and the probability space can know the probability of the adversary . Definition 2. (Parallel composition of PAs) If  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4  are PAs, then their parallel composition is denoted as M1Q%M2. It is given by the  EMBED Equation.DSMT4  where M1Q%M2 is defined such that  EMBED Equation.DSMT4  if and only if one of the following holds:  EMBED Equation.DSMT4  (1)  EMBED Equation.DSMT4  (2)  EMBED Equation.DSMT4  (3) and  EMBED Equation.DSMT4  (4) Definition 3. (Alphabet extension of PA) For any  EMBED Equation.DSMT4  and set of actions y, we extend the alphabet of M to y, denoted M[y], as follows:  EMBED Equation.DSMT4  where M[y] is a probabilistic transition relation on M[y], and M[y] = M " {(v, , v)|v" V   " y \ M}. For any state v = (v1, v2) of M1Q%M2, the projection of v on Mi, denoted by v!Mi. Then, we extend it to distributions on the state space V1 V2 of M1Q%M2. For each trace t on M1Q%M2, the projection of t on Mi, denoted by t!Mi, i.e., the trace can be acquired from Mi by projecting each state of t onto Mi and removing all the actions not in the alphabet Mi.  Figure 1 (a) Probabilistic automata M1 (b) probabilistic automata M1 and (c) DFA Perr for the safety property P  Figure 2 Assumptions  EMBED Equation.DSMT4 ,  EMBED Equation.DSMT4  for M1, M2 Example 1. Figure 1 shows two PAs M1 and M2. The switch of a device M2 is controlled by a controller M1. Once the emergence of the detect signal, M1 can send a warn signal before the shutdown signal, but the attempt may be not successful with probability 0.2. M1 issues the shutdown signal directly, this will lead to the occurrence of a mistake in the device M2 with probability 0.1(i.e., M2 will not shut down correctly). The DFA Perr indicates that action fail never occurs. We need to verify whether M1Q%M2 " 'P*#e"0.98 holds.  Figure 3 NL*-based learning framework for the rule SYM On the contrary, we need to check whether it is a spurious counterexample, let the conjectured assumption becomes stronger than necessary. If the spurious counterexample exists, the conjectured assumption must be refined once again. When the conjectured assumption is updated, the framework will return a lower and an upper bound on the minimum probability of safety property P holding. This measure means that it can provide some valuable information to the user, even if the framework could not produce an accurate judgment. More details are described in the following sections. property P. Figure 6 Assumptions  EMBED Equation.DSMT4 ,  EMBED Equation.DSMT4 ,  EMBED Equation.DSMT4  for M1, M2, M3 Through premise n + 1, we can find a spurious counterexample trace cex(0.2, 'shutdown*#) in  EMBED Equation.DSMT4  and cex(1, 'shutdown*#) in  EMBED Equation.DSMT4 , but corresponding spurious counterexample trace in  EMBED Equation.DSMT4  is nonexistent (since action fail exists). So prefixes of all infinite traces in  EMBED Equation.DSMT4  can be accepted by  EMBED Equation.DSMT4  and we can think M1Q%M2Q%M3 " 'P*#e"0.98 holds. Table 1 Sensor network experimental results Case study [sensor network]Sensor numbersComponent sizesSYMASYM [23]|M1||M2|MQTime(s)MQTime(s)17232161.5252.72118432161.8252.931066232162.4253.9 The second case is the clientserver model studied from Pasareanu et al. [42]. Feng et al. [23] injects (probabilistic) failures into one or more of the N clients and changes the model into a stochastic system. In clientserver model, each client can send requests for reservations to use a common resource, the server can grant or deny a clients request, and the model must satisfy the mutual exclusion property (i.e., conflict in using resources between clients) with certain minimum probability. Through the SYM rule, we make the server as a component M1 and the composition of N clients as the other component M2. The verified property is 'P*#e"0.9.We use the method of Feng et al. [23] to inject (nonprobabilistic and probabilistic) failures into the server respectively. Table 2 shows experimental results for the clientserver.We first present a sound SYM for compositional stochastic model checking. Then, we propose a learning framework for compositional stochastic model checking PAs with rule SYM, based on the optimization of LAGR techniques. Our optimization can terminate the learning process in advance, if a counterexample appears in any membership and equivalence query. We also extend the framework to support the assume-guarantee rule SYM-N which can be used for reasoning about a stochastic system composed of n e" 2 components: M1Q%M2Q%Q%Mn. Experimental results show that our method can improve the efficiency of the original learning framework [23]. Similar to Feng et al. [22] and Kwiatkowska et al. [33], it can return the tightest bounds for the safety property as a reference as well. In the future, we intend to develop our learning framework to produce richer classes of probabilistic assumption (for example weighted automata as assumptions [39]) and extend it to deal with more expressive types of probabilistic models. To consider the case where the model satisfies the properties, the last case is randomized consensus algorithm from Feng et al. [23] without modification. The algorithm models N distributed processes trying to reach consensus and uses, in each round, a shared coin protocol parameterized by K. The verified property is 'P*#e"0.97504, and 0.97504 is the minimum probability of consensus being reached within R rounds. Through the SYM rule, the system is decomposed into two PA components: M1 for the coin protocol and M2 for the interleaving of N processes. In Tables 1 and 2, the component sizes of the M1 and M2 are denoted as |M1| and |M2|, and the performance is measured by the total number of Membership Queries (MQ) and runtimes (Time). Note that Time includes counterexample construction, NFA translation and the learning process. Moreover, for the accuracy of the results, we select the counterexamples in the same order as Feng et al. [23] in each equivalence query. Note that Feng et al. [23] has included comparisons with non-compositional verification, so this paper only compares with Feng et al. [23]. Table 2 Clientserver experimental results Case study [consensus][N R K]Component sizesSYMASYM [23]|M1||M2|Time (s)Time (s)2 3 20321738912.111.62 4 443164957182.280.73 3 20381938837355.8350.2To consider the case where the model satisfies the properties, the last case is randomized consensus algorithm from Feng et al. [23] without modification. The algorithm models N distributed processes trying to reach consensus and uses, in each round, a shared coin protocol parameterized by K. The verified property is 'P*#e"0.97504, and 0.97504 is the minimum probability of consensus being reached within R rounds. Through the SYM rule, the system is decomposed into two PA components: M1 for the coin protocol and M2 for the interleaving of N processes. In Tables 1 and 2, the component sizes of the M1 and M2 are denoted as |M1| and |M2|, and the performance is measured by the total number of Membership Queries (MQ) and runtimes (Time). Note that Time includes counterexample construction, NFA translation and the learning process. Moreover, for the accuracy of the results, we select the counterexamples in the same order as Feng et al. [23] in each equivalence query. Note that Feng et al. [23] has included comparisons with non-compositional verification, so this paper only compares with Feng et al. [23]. As shown in Tables 1 and 2, the experiment results show that our framework is more efficient than Feng et al. [23]. Obviously, we can observe that, for all cases, runtimes and the number of the membership queries in our framework are less than Feng et al. [23]. Moreover, the runtimes need less in our framework, when the model has a large scale. A larger size model may have less runtimes and the number of membership queries than a smaller model. However, this is not proportion with the model size. The efficiency of our framework depends only on the time of a counterexample (indicate that the probabilistic safety property is violated) appears in conjectured assumptions. The earlier a counterexample appears, the more efficient our framework performs. In Table 3, the component sizes of the M1 and M2 is also denoted as |M1| and |M2|. The performance is measured only by total runtimes (Time), because both methods have the same amount of MQ if the model satisfies the properties. Because of the cost of early detection, we can find that our methods need to spend more time than Feng et al. [23] and cost grows with the model size. But compared with acquirement of optimization in Tables 1 and 2, the cost is acceptable in Table 3. 2. conclusion ACKNOWLEDGMENT This work was supported by National Natural Science Foundation of China (61303022), Natural Science Major Project of Jiangsu Higher Education Institutions (17KJA520002), and Nanjing Scientific & Technological Innovation Project for Outstanding Overseas Returnees. REFERENCES [1] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using branching time temporal logic, in: D. Kozen (Eds.), Workshop on Logics of Programs, Lecture Notes in Computer Science, vol. 131, Springer, Berlin, Heidelberg, 1981, pp. 5271. DOI: https://doi.org/10.1007/BFb0025774 [2] J.P. Queille, J. Sifakis, Specification and verification of concurrent systems in CESAR, in: M. Dezani-Ciancaglini and U. Montanari (Eds.), Proceedings of the 5th International Symposium on Programming, Lecture Notes in Computer Science, vol. 137, Springer, Berlin, Heidelberg, 1982, pp. 337351. DOI: https://doi.org/10.1007/3-540-11494-7_22 [3] C. Baier, J-P. Katoen, Principles of Model Checking, MIT Press, 2008. [4] M. Kwiatkowska, G. Norman, D. Parker, Stochastic model checking, in: M. Bernardo, J. Hillston (Eds.), Proceedings of the]^fiklrstu 6 7 T U d e n X ]  : ˿ui`Xhhm5hfhmPJhfhmH*nHtHhfhmPJnHtHhjXhmo(hfhmo( hfhmhfhmH*o( hhmhfhmPJo(hfhmnHtHhfhmH*PJo(hjhm5PJh hmPJ hmH*h%EhmH* h%Ehm hjhm hjXhm"^t6 e n ! dL0$~$*&Y&-2gdigdigdigdigdigdigdgdigdmgdmgdgdmgdm: ? @ ! * + , D E ` a ;?jklm<>@BDHbdJL  4?Fg޼ hQhmhjXhmo(hfhm6 hmo( h hmhjXhmB*phh: h%Ehmhmhhm5h%EhmH* hfhm hjXhmAgk 8:lnprtx7:+  :!!p!r!t!įh~hmH* hmo( h%Ehm hThmhhmH*OJQJ^JhfhmH*OJQJ^JhVhmH*OJQJ^Jhfhm6h~+ hmOJQJ^J hjXhmhm;t!v!x!z!~!!!!!!!!!!!!"" " "2"4"6"l"n"p"r"t"v"z"|"~""""""""""""ξΗΗzmzmhVhmOJQJ^J hmH*h-thmH*hr0hmH*h&?}hmH*hfhm6H*hfhm6 hjXhmhP/ChmH*OJQJ^Jhfhm6H*OJQJ^JhfhmH*OJQJ^JhVhmH*OJQJ^Jh~+ hmOJQJ^Jh~+ hmH**"## #@#B#D#F#H#L############ $"$$$&$($,$.$0$~$$$$$$$$$$$$%%%%"%&%(%˵íí؏Ï؜y؜y؜y؜y؜ ho/=hm hfhmhfhmH*h#8hmOJQJ^JhmhFhmOJQJ^Jh#8hmH*hhmH*OJQJ^Jhfhm6hBhmOJQJ^J hjXhmh~+ hmH*hfhm6H*hfhmH*OJQJ^J/(%*%4%*&W&Y&n&o&&&&&&&&&u'y''''`(n(((())))))))*****+++++>+B+J+m+q+x+,,,,,,,l-n-v----. ..k.ƾƶ hjhmhfhmH*h#8hmH*hfhm6h#8hmOJQJ^J hmo(h%EhmH* ho/=hm h8<hm hfhmhm hjXhmBk.l....///(/,/4///////'0(0F0G0m0n000000000000011292;22221444;4444444B5C5X5[5b5555566666667h7i7j7k7m7{7777777hfhm6 hfhm hjhmh%EhmH* hmo( ho/=hm hjXhmhmP2;28B@@4F`FJJNNNOJQT])`H`g````begd{R?gdj?gd{Rgdgdgdgdgdigdi778888888888999x;;;;Z<p<<<<5>6>7>8>:>;>Q>i>l>s>>>>>>??q????????@@B@@@@@ABBBCC C CqC}CCCCCDDD hR$hm hfhm h) hmh%EhmH* h#hm h8^hmhfhm6 hmo( hjXhmhm hjhmHDDDDDDEEEEEEEEFF4F`F0G:GHG-I.I5I6I7IhIiIjIIJJJJ^K`KLLDLFLMMMMMMMMM8N=NDNjNkNrNsNNNNNNOOOOO0P2P hfhm h*Vhmh%EhmH*hjXhmo(h5OwhmH*hguhmH* hRGhm h%Ehmhfhm6 hjXhmhm hmo(C2P6P8P:PPPPPPPPPPPPPPPPPPPPPPPPQ Q QQQQQQQ Q"Q,Q.Q0Q2Q4Q6Q>Q@Qķİˬ񤝐th}C"hmOJQJ^J h}C"hmh}C"hmH*h|hmOJQJ^J h|hmh|hmH*hm hfhmh^5hmOJQJ^J h^5hmh^5hmH*h#^hmOJQJ^J h#^hmhfhm6H*hfhm6 hjXhm-@QBQDQFQJQdQQQRR"R0R2R\R^RRRRRRRRS S SSSSSSSƶ䩠yyre[M[Mhfhm6OJQJ^JhmOJQJ^JhVhmOJQJ^J hVhmhfhm6H*jhf=\hmEHUj5a hf=\hmEHUVhf=\hmEHjhf=\hmEHUj5a hf=\hmEHUVhf=\hmEHjhf=\hmEHUhjXhm5 hjXhmhmh}C"hmH*hfhm6S S"S$S(S*S4SS@SBSSSSSSSSSSTTTTUU0U2U4U6UVUXUZU^U`UdUfUhUjU淯{ng hge_hmjhf=\hmEHUj5a hf=\hmEHUVhf=\hmEHjhf=\hmEHUhfhm6H*hmhfhm6 hjXhmhfhmOJQJ^Jhfhm6OJQJ^JhVhmOJQJ^JhmOJQJ^Jhfhm6H*OJQJ^J&jUlUnUpUrUUUUUUUUUUUUUUUUVVVVVWWZW\WWWWWWWW̿̿ӎuhӎj hf=\hmEHUj5a hf=\hmEHUVhf=\hmEHjhf=\hmEHU hnhm hJhmhUmhm6hmhmOJQJ^Jh7hmOJQJ^J h7hm hjXhmhfhm6H*hfhm6 hge_hmhge_hmOJQJ^J#WWWWWWWWWW*X,X.X0XZX\X^XbXdXfXjXtXXXXXXXXXXYY^Y`YZZ[[[»ղƋƋ{{sl huehmhUmhm6h!6hmH*h&T+hmH*hfhm6H*jhf=\hmEHUj5a hf=\hmEHUVhf=\hmEH hhhmhmhfhm6 hjXhmjhf=\hmEHUj hf=\hmEHUj5a hf=\hmEHUV'[[[[.[/[0[1[2[S[T[\\\\\p\r\\\]]] ]]]@]B]D]F]]]]]]ʽڔwjf^hjXhm5hmjhf=\hmEHUj5a hf=\hmEHUVjhf=\hmEHUj5a hf=\hmEHUVhfhm6H* hfhmhfhm6jahf=\hmEHUj5a hf=\hmEHUVhf=\hmEHjhf=\hmEHU hjXhmhjXhmo("]]6^8^d^f^h^j^t^v^^^^^^_______ _"_*_L_N_z_|_ɼ٬zmdTj5a hf=\hmEHUVhf=\hmEHjhf=\hmEHUhFDIhmOJQJ^JhFDIhmH*hfhm6hjXhmo(j!hf=\hmEHUj5a hf=\hmEHUVjhf=\hmEHUj5a hf=\hmEHUVhf=\hmEHjhf=\hmEHU hjXhmhjXhm5o(|_~_______________ `)`*`@`A`B`C`H`I`_`Ķީtm_TtKtmh-hmCJj/hf=\hmUj5a hf=\hmUV hf=\hmjhf=\hmUhmj*+hf=\hmEHUj5a hf=\hmEHUVhf=\hmEHjhf=\hmEHUhhmH*OJQJ^JhhmH*hfhm6H*hfhm6 hjXhmjhf=\hmEHUj&hf=\hmEHU_```a`b`g`h`~````````````````````˽Ҭ}unaXHj5a hf=\hmEHUVhf=\hmEHjhf=\hmEHU hjXhmhjXhm5j<hnThmUj5a hnThmUV hnThmjhnThmUhm hmCJj7hf=\hmUj5a hf=\hmUV hf=\hmh-hmCJjhf=\hmUj*3hf=\hmUj5a hf=\hmUV```aa a%a&a*a+a5a6a7a8a9aGaHa^a_a`aaabbbbb b bb`bbbdbfbtbvbxbzb|b~bbbbbżҕҕwwҕhhmH* hhm h Shmh ShmH*hfhm6H*j4Dhf=\hmEHUj5a hf=\hmEHUVhf=\hmEHjhf=\hmEHUhfhm6hm hjXhmjhf=\hmEHUj7@hf=\hmEHU*bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbcc c ccccccFcHcJcdcfchclcccccccccc俲䝖h8hmH* h R3hmh R3hmH*hhmOJQJ^JhUhmOJQJ^JhUhmH*hhmH*hm hjXhmhfhm6H*hfhm6 hhmhhmOJQJ^J8cccc d"d*d,d.d0d2d4d\d^dfdhdjddddddddee&e(e*eeeeeeeeeeeeeeffff밽ܤ{sh7;hmH*hChmH* h%Ehmh hmPJh%Ehm5PJ hj5PJjHhj5PJUhPphmOJQJ^Jhfhm6H*ha!hmOJQJ^Jha!hmH* hjXhmh8hmH*hfhm6h8hmOJQJ^J-ee>f@ffNiRiiJlPmppp,qdqqqqq$dh$Ifa$gd#gdYF~gdNgdYF~%gdYF~%$a$gdjf f#ff?f@fGfHfIfUfVflfmfnfofqfrfffffffffffffffƸ蚓z蚓laYYRY hjXhmhLhmH*j*hf=\hmUj5a hf=\hmUVjhf=\hmUj5a hf=\hmUV hf=\hmjhf=\hmUh hmPJh hm5PJh%Ehm5PJnHtHhj5PJnHtHjhj5PJUnHtH ho[hm h%EhmhfhmH*hfhm6 ffffffffff)g*g+ggggghh:hhhhhi i"i$i&i(i*i,i.i0i2i4i>iNiPiRibidihijiiXkYk\l^l`lŸŸh%EhmH* hLhmhmh%Ehm5 hj5jUhj5Uhfhm6OJQJ^JhOhmOJQJ^J hOhmhOhmOJQJ^JhOhmH*hfhmH*hLhmH*hfhm6 hjXhm2`lblplrltllllllllllllllll*m,m.m0m:mmBmDmFmJmLmNmPmpmƸƟؐƂwogogog`Y hjXhm h hmhYrhmH*hfhm6jk-hf=\hmUjM5a hf=\hmUVhmj=*hf=\hmUjL5a hf=\hmUVj'hf=\hmUjK5a hf=\hmUV hf=\hmjhf=\hmU h%Ehmh hmPJh hm5PJh%Ehm5PJhZ"pmtmvmxmmmmmmnn4n6n8n:nDnRnTndnfnpnrnnnnno oooo@oBooopȿȿȿuhȿj7hf=\hmEHUjP5a hf=\hmEHUVjA4hf=\hmEHUjO5a hf=\hmEHUVj0hf=\hmEHUjN5a hf=\hmEHUVhf=\hmEHjhf=\hmEHUhmOJQJ^JhDhmOJQJ^Jhm hjXhmhfhm6$ppppBpDppprptpvppppppppppppppppppppppΔwwjjj\XS h:5hmhDhmH*OJQJ^JhDhmOJQJ^JhDhmOJQJ^JhDhmH*hfhm6 hDhmjM@hf=\hmEHUjR5a hf=\hmEHUVhf=\hmEHjhf=\hmEHU hjXhmjhf=\hmEHUj;hf=\hmEHUjQ5a hf=\hmEHUVppp,qVqXqvqxqqqqqqqqqqqqqqqrrrr4r5rOrPrRrVr\ruuuuv.y·ˏssl hHJhHJhHJhmOJQJ^JhHJhmo( hHJhmhHJh~chN56CJh~chNCJEHH*h~chN6CJEHh~chNCJEHh~chNCJ hjXhNh~chN5CJNHh~chN5CJh%hm5 h hmh%Ehm5&qqq)$dh$Ifa$gdkdSE$$IfTl4;r n! t0644 lap2ytTqqqqqqqrrrr r rrrrrrrr#r&r)r-r0r4rFfvJ $$Ifa$gdFf7G$dh$Ifa$gd4r5r6r8r>rArDrHrKrOrPrQrRrz{{~)1AE $Ifgddh$Ifgd#gdYF~gdHJFfP $$Ifa$gdFfM.y0y4y6yyzb{c{{{||x|z|||^}`}}}}}}!~"~r~s~t~~~~~~~~~~~~~~~~~~   XZjܺܢܢܢܢϢϢܓ h%EhHJhkyhHJH*hkyhHJ6h_hHJH*h_hHJ6h_hHJOJQJ^JhjXhHJ6hHJhjXhHJNH hjXhHJhHJhHJ^J hHJhHJhHJhHJOJQJ^J:jn{.:dpԀ*/1@AOPRSTUVWXYZ[\noǁȁƼ򼎂vvhhHJCJEHH*hhHJ6CJEHhhHJCJEHhhHJCJhhHJ5CJKHPJhhHJ56CJhhHJ5CJh{R h*Vhm h%Ehmh%Ehm5 hHJ5hjXhHJNHhHJ hjXhHJ h%EhHJ,EOPkd#S$$IfTl4r v 0 t0644 lap2ytT $$Ifa$gdPQRW\en$dh$1$Ifa$gd $$Ifa$gd$N$IfWD`Na$gd$dh$Ifa$gdnokdT$$IfTl4ֈ v  0 t0644 lap<ytTopw| $$Ifa$gdkdT$$IfTl4ֈ v  0 t0644 lap<ytT $$Ifa$gdkdU$$IfTl4ֈ v  0 t0644 lap<ytTǁ $$Ifa$gdǁȁkdV$$IfTl4ֈ v  0 t0644 lap<ytTȁɁ<HxyNPRօ؅څ"#$45678=>?@Adp -.~9:;@ABVW h%Ehmh:hkyhmH*hkyhm6h_hmH*h_hm6h_hmOJQJ^JhjXhm6 hjXhmhmGȁ؅څ(WYPE;(gd 'gd gd&gd #gdYF~gdYF~$gdYF~WXYZ_`abc͋ϋYeČŌ(.0789;юҎ$*+]_gϰ٩٢٢٢٢ٛٛٛٛٛٛٛ٢٢٢ hh h%Eh hjXh h&Wh 5hzhz:hjXho( hjXh huL5 h:5h h%Ehm hjXhmhmhkyhmH*hkyhm6=ghޏ$%LMQop~CDEPQ^fjxDEFQR]efjxABCJLX!"!" hd#h U hh h+x\h h%Eh h X Formal Methods for the Design of Computer, Communication and Software Systems: Performance Evaluation (SFM), Springer, Berlin, Heidelberg, 2007, pp. 220270. DOI: https://doi.org/10.1007/978-3-540-72522-0_6 [5] V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, Automated verification techniques for probabilistic systems, in: M. Bernardo, V. Issarny (Eds.), Proceedings of the Formal Methods for Eternal Networked Software Systems (SFM), Springer, Berlin, Heidelberg, 2011, pp. 53113. DOI: https://doi.org/10.1007/978-3-642-21455-4_3 [6] G.D. Penna, B. Intrigila, I. Melatti, E. Tronci, M.V. Zilli, Bounded probabilistic model checking with the muralpha verifier, in: A.J. Hu, A.K. Martin (Eds.), Proceedings of the Formal Methods in Computer-Aided Design, Springer, Berlin, Heidelberg, 2004, pp. 214229. DOI: https://doi.org/10.1007/978-3-540-30494-4_16 [7] E. Clarke, O. Grumberg, S. Jha, et al., Counterexample-guided abstraction refinement, in: E.A. Emerson, A.P. Sistla (Eds.), Computer Aided Verification, Springer, Berlin, Heidelberg, 2000, pp. 154169. DOI: https://doi.org/10.1007/10722167_15 [8] H. Barringer, R. Kuiper, A. Pnueli, Now you may compose temporal logic specifications, in: Proceedings of the Sixteenth Annual ACM Symposium on the Theory of Computing (STOC), ACM, 1984, pp. 5163. DOI: https://doi.org/10.1145/800057.808665 [9] A. Pnueli, In transition from global to modular temporal reasoning about programs, in: K.R. Apt (Ed.), Logics and Models of Concurrent Systems, Springer, Berlin, Heidelberg, 1984, pp. 123144. DOI: https://doi.org/10.1007/978-3-642-82453-1_5 [10] B. Meyer, Applying "Design by Contract", Computer 25(10) (1992) 4051. DOI: https://doi.org/10.1109/2.161279 [11] S. Bensalem, M. Bogza, A. Legay, T.H. Nguyen, J. Sifakis, R. Yan, Incremental component-based construction and verification using invariants, in: Proceedings of the Conference on Formal Methods in Computer Aided Design (FMCAD), IEEE Press, Piscataway, NJ, 2010, pp. 257256. [12] H. Barringer, C.S. Pasareanu, D. Giannakopolou, Proof rules for automated compositional verification through learning, in Proc. of the 2nd International Workshop on Specification and Verification of Component Based Systems, 2003. [13] M.G. Bobaru, C.S. Pasareanu, D. Giannakopoulou, Automated assume-guarantee reasoning by abstraction refinement, in: A. Gupta, S. Malik (Eds.), Proceedings of the Computer Aided Verification, Springer, Berlin, Heidelberg, 2008, pp. 135148. DOI: https://doi.org/10.1007/978-3-540-70545-1_14 [14] J.M. Cobleigh, D. Giannakopoulou, C.S. Psreanu, Learning assumptions for compositional verification, in: H. Garavel, J. Hatcliff (Eds.), Proceedings of the 9th Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Lecture Notes in Computer Science, vol. 2619, Springer, Berlin, Heidelberg, 2003, pp. 331346. DOI: https://doi.org/10.1007/3-540-36577-X_24 [15] O. Grumberg, D.E. Long, Model checking and modular verification, ACM Trans. Program. Lang. Syst. 16(3) (1994) 843871. DOI: https://doi.org/10.1145/177492.177725 [16] R. Segala, Modeling and verification of randomized distributed real-time systems, Ph.D. Thesis, Department of Electrical Engineering and Computer Science, MIT, 1995 (Also appears as Technical Report MIT/LCS/TR-676). [17] M. Kwiatkowska, G. Norman, D. Parker, H. Qu, Assume-guarantee verification for probabilistic systems, in: J. Esparza, R. Majumdar (Eds.), Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Springer, Berlin, Heidelberg, 2010, pp. 2337. DOI: https://doi.org/10.1007/978-3-642-12002-2_3 [18] K. Etessami, M. Kwiatkowska, M. Vardi, M. Yannakakis, Multi-objective model checking of Markov decision processes, in: O. Grumberg and M. Huth (Eds.), Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Springer, Berlin, Heidelberg, 2007, pp. 5065. DOI: https://doi.org/10.1007/978-3-540-71209-1_6 [19] R. Bouchekir, M.C. Boukala, Learning-based symbolic assume-guarantee reasoning for Markov decision process by using interval Markov process, Innov. Syst. Softw. Eng. 14(3) (2018) 229244. DOI: https://doi.org/10.1007/s11334-018-0316-7 [20] F. He, X. Gao, M. Wang, B-Y. Wang, L. Zhang, Learning weighted assumptions for compositional verification of markov decision processes, ACM Trans. Softw. Eng. Meth. 25(3) (2016) 21. DOI: https://doi.org/10.1145/2907943 [21] A. Komuravelli, C.S. Psreanu, E.M. Clarke. Assume-guarantee abstraction refinement for probabilistic systems, in: P. Madhusudan, S.A. Seshia (Eds.), Proceedings of the International Conference on Computer Aided Verification, Springer, Berlin, Heidelberg, 2012, pp. 310326. DOI: https://doi.org/10.1007/978-3-642-31424-7_25 [22] L. Feng, M. Kwiatkowska, D. Parker, Compositional verification of probabilistic systems using learning, in: Proceedings of the Seventh International Conference on the Quantitative Evaluation of Systems, IEEE Press, Williamsburg, VA, USA, 2010, pp. 133142. DOI: https://doi.org/10.1109/QEST.2010.24 [23] L. Feng, M. Kwiatkowska, D. Parker, Automated learning of probabilistic assumptions for compositional reasoning, in: D. Giannakopoulou, F. Orejas (Eds.), Proceedings of the Fundamental Approaches to Software Engineering (FASE), Springer, Berlin, Heidelberg, 2011, pp. 217. DOI: https://doi.org/10.1007/978-3-642-19811-3_2 [24] T. Han, J.P. Katoen, D. Berteun, Counterexample generation in probabilistic model checking, IEEE Trans. Softw. Eng. 35(2) (2009) 241257. DOI: https://doi.org/10.1109/TSE.2009.5 [25] A. Hinton, M. Kwiatkowska, G. Norman, D. Parker, PRISM: a tool for automatic verification of probabilistic systems, in: H. Hermanns, J. Palsberg, Proceedings of the Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Springer, Berlin, Heidelberg, 2006, pp. 441444. DOI: https://doi.org/10.1007/11691372_29 [26] D. Eppstein, Finding the k shortest paths, SIAM J. Comput. 28(2) (1998) 652673. DOI: https://doi.org/10.1137/S0097539795290477 [27] H. Debbi, A. Debbi, M. Bourahla, Debugging of probabilistic systems using structural equation modelling, Int. J. Critic. Comput. Based Syst. 6(4) (2017) 250274. DOI: https://doi.org/10.1504/IJCCBS.2016.081805 [28] H. Aljazzar, S. Leue, K*: a heuristic search algorithm for finding the k shortest paths. Artif. Intell. 175(18) (2011) 21292154. DOI: https://doi.org/10.1016/j.artint.2011.07.003 [29] H. Debbi, M. Bourahla, Generating diagnoses for probabilistic model checking using causality, Comput. Inform. Technol. 21(1) (2013) 1322. DOI: https://doi.org/10.2498/cit.1002115 [30] H. Hermanns, B. Wachter, L. Zhang, Probabilistic CEGAR, in: A. Gupta, S. Malik (Eds.), Proceedings of the Computer Aided Verification (CAV), Springer, Berlin, Heidelberg, 2008, pp. 162175. DOI: https://doi.org/10.1007/978-3-540-70545-1_16 [31] B. Dutertre, L. de Moura, The Yices SMT Solver, Technical Report, SRI International, 2006. [32] M.O. Rabin, Probabilistic automata, Inform. Control. 6(3) (1963) 230245. DOI: https://doi.org/10.1016/S0019-9958(63)90290-0 [33] M. Kwiatkowska, G. Norman, D. Parker, H. Qu, Assume guarantee verification for probabilistic systems, in: J. Esparza, R. Majumdar (Eds.), Proceedings of the Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Springer, Berlin, Heidelberg, 2010, pp. 2337. DOI: https://doi.org/10.1007/978-3-642-12002-2_3 [34] B. Bollig, P. Habermehl, C. Kern, M. Leucker, Angluin-style learning of NFA*, in: Boutilier and Craig (Eds.), Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI), AAAI Press, Pasadena, CA, USA, 2009, pp. 10041009. [35] F. Denis, A. Lemay, A. Terlutte, Residual finite state automata, Fund. Inform. 51(4) (2002) 339368. [36] F. Denis, A. Lemay, A. Terlutte, Learning regular languages using RFSAs, Theor. Comput. Sci. 313(2) (2004) 267294. DOI: https://doi.org/10.1016/j.tcs.2003.11.008 [37] L. de Alfaro, Formal Verification of Probabilistic Systems, Ph.D. Thesis, Stanford University, 1997. [38] M.O. Rabin, D.S. Scott, Finite automata and their " ghBCHOSWXa'()12;CDHV hELh h|nh h \h%Eh \h%Eh ] h+x\h h h%Eh PVC L  R  g uDFX$(gd ~"#fgy GHIST`him{ opqr|OWPQVW]^ijtu hnh h+x\h h%Eh KH h h hELh h h%Eh R~XZ$%)7C D I W X      z { | } ~                K d e             . / 0 7 @ A ~     h%Eh @ h h h%Eh OJQJ hTihh h+x\h h h%Eh P          # $ . Q V W       CDHIKLST[]cmnxy"#./:ftu<=V[]^_`adkns{| h$h h h h%Eh @ h+x\h h%Eh hTihh h R|%&*-HITZ"#$'defpq}Cklmu  ,1?@ h$h h$ h+x\h h h h%Eh @ h$h h h%Eh Q#$.W$$$$$$$"$($)$3$4$>$?$K$m$o$p$$$$$$$$$$$$$$$$ƽ̲̫zvh^jh^Uh:1h^ h:B*CJOJPJQJaJnHphtHh. jh. U h%Eh[Nh+lh[N0J1@h%Eh[N@ h[N@jh[N@U h ]h%Eh ]U h h h%Eh @h h%Eh .decision problems, IBM J. Res. Dev. 3(2) (1959) 114125. DOI:  HYPERLINK "https://doi.org/10.1147/rd.32.0114" https://doi.org/10.1147/rd.32.0114      PAGE \* MERGEFORMAT 8  PAGE \* MERGEFORMAT 1 $$$$$$$$$$$$$$$$$4(gd $a$gd< ,$a$gd<  "dG$H$gdmd$$$$$$$$$$$$$$$4žh; ? h%Eh[Nh. h:h^ h:mH sH hCh^jh^UmHnHuh mHnHujh^U< 0 0&P 18:pm. A!F"F#[$'% @ 0 0&P 18:p:. A!F"F#[$'% P < 0 0&P 18:pm. A!F"F#[$'% < 0 0&P 18:pm. A!F"F#[$'% @ 0 0&P 18:pHJ. A!F"F#[$'% P < 0 0&P 18:pHJ. A!F"F#[$'% @ 0 0&P 18:p&W. A!F"F#[$'% P @ 0 0&P 18:p:. A!F"F#[$'% P Dd 4D  3 A?"?2H+pN戜D=<2$D `!+pN戜D=<2 X0xTKOQ>NP2DGbqCB)F[эik;`ڕD M7&.h\B/0&.bӕ&̴U^s=y+H"\ATt)Du%dRi}Jk# hi['B"ѱ*B~w=D]/C. fZG cw󪉑]D+l Ip!}/; ]sڴI".-ZenB`邆`Q*ny_{ͺ-m-q'Fw(>mj?#o$ q3g~cKHcv/F?)hSĐe'n| ;7ˉ1Q.qB/;5Z(L1'2+q](S ֛òӣx (0g -uXv@ ;Bsy%A[T'RV&a2>Rf T&8==ϧlOYyȧT/O efR \fy4;ǥm /Eˁhpy:8^nӃT)-/E!LNmI-2HhH@)#yQ& :COzx(IZM>W'~P: j3uX?$iq e ɏffv%_/[Wg/*RX18.g4(ɻy_^=_>ÐuDd XD  3 A?"?2l㉽Q&h[>H$ `!@㉽Q&h[>xeRKkQ$&$PZN @[q'8MX2fWd]/,dwŭY){3A+"x %Q.)hM|mb+ƒr* 1 Iatn@C3E/FS>pJ\pFhm Kr}*n,;]5$RCӪ3hGmZ<(p]mW/KEaYn\ȅ*ѥ50b C1Nr߉w}omnW6D\܄X}쵝fs{\[>ѓMt4<A:R؅~ų;g$sfR|0٭QKY9M$%@Ժ|ϱ I!Mɵ)%B ieDcQA(VLbW^6-'M ʼU}!b[{zxgqL,Dd D  3 A?"?2}AZ-OO p( `!h}AZ-OO  26xSkQ6fܤZJ؍⏃ "n$tklRDы^ [%'kZ(8|73̬QIzM,I%h4R֢ci CaI%M]EmLctaD?hD[¹RMuB+t7>ywf;tIwGK(|貎1Rb?jXTlD}w.1ޘ-TN4"ZN~ֿy1_=•so;<#v;,ݰmA߁[ js{Ѽ4))h*UjWIV^n=pΪR.rڸṤuNI`"b'km7N@1u /3I4PMč./pb!n.n\Hܙ*zȝ3D{AƑ҄NJ[PB1X#ũP)6 KS18c Rhs )~H桽Xrfg%MDgyEOӰ]}ϼjTu:M_wuX~k3 {9 Ggogc[%^Rr(>YJV]9{۫?$'S9*  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry F?vData WWordDocument.6ObjectPool'`?_1630919646F``Ole CompObjiObjInfo "#$%&'(+./014789:;>ABCDGJKLMPSTUVY\]^_`abcfijklmnopsvwxyz{|}~ FMathType 6.0 Equation MathType EFEquation.DSMT49qHn*T * DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  M==Equation Native _1630919647 FppOle  CompObj iV,v,a M ,d M ,L() FMathType 6.0 Equation MathType EFEquation.DSMT49qH*T * DSMT6WinAllBasicCodePagesObjInfo Equation Native _1630919648FppOle Times New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  v"V FMathType 6.0 Equation MathType EFEquation.DSMT49qCompObjiObjInfoEquation Native _1630919649 FppHt*T * DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  v ! a m FMathType 6.0 Equation MathType EFEquation.DSMT49qOle CompObjiObjInfo Equation Native !H<*T * DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  v 0  ! a 0, m 0 v 1  ! a 1, m 1 """ FMathType 6.0 Equation MathType EFEquation.DSMT49qH4*T * DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E__1630919650Fp Ole )CompObj*iObjInfo,Equation Native -_1630919651"F  Ole 2CompObj 3iA  v 0 ==v FMathType 6.0 Equation MathType EFEquation.DSMT49q3:;T ; DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_ObjInfo!5Equation Native 6V_1630919652$F  Ole <APAPAE%B_AC_A %!AHA_D_E_E_A  v i  ! a i m i FMathType 6.0 Equation MathType EFEquation.DSMT49qCompObj#%=iObjInfo&?Equation Native @"_1630919654O)F  B)T ) DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  Trace Ms FMathType 6.0 Equation MathType EFEquation.DSMT49qOle ECompObj(*FiObjInfo+HEquation Native IB)T ) DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  Pr Ms FMathType 6.0 Equation MathTy_1630919655.F  Ole NCompObj-/OiObjInfo0Qpe EFEquation.DSMT49qB)T ) DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  Trace MsEquation Native R"_1630919656,63F 4Ole WCompObj24Xi FMathType 6.0 Equation MathType EFEquation.DSMT49qH*T * DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  M 1 ==V 1 ,vObjInfo5ZEquation Native [_16309196578F44Ole d 1 ,a M 1  ,d M 1  ,L 1 () FMathType 6.0 Equation MathType EFEquation.DSMT49qCompObj79eiObjInfo:gEquation Native h_16309196581E=F44H*T * DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  M 2 ==V 2 ,v 2 ,a M 2  ,d M 2  ,L 2 () FMathType 6.0 Equation MathType EFEquation.DSMT49qB¬)T ) DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_Ole qCompObj<>riObjInfo?tEquation Native uA  PAV 1 V 2 ,v 1 ,v 2 (),a M 1  *"a M 2  ,d M 1WinAllCodePagesMalgun Gothic  M 2  ,L() FMathType 6.0 Equation MathType EFEquation.DSMT49qH“*T * DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E__1630919659BF4[Ole CompObjACiObjInfoDEquation Native _1630919660@JGF[[Ole CompObjFHiA  v 1 ,v 2 () ! a m 1 m 2 FMathType 6.0 Equation MathType EFEquation.DSMT49qObjInfoIEquation Native @_1630919661LF[[Ole B$)T ) DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  v 1  ! a m 1 ,v 2  ! a m 2 anda"a M 1  )"a M 2  FMathType 6.0 Equation MathType EFEquation.DSMT49qBb)T ) DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_CompObjKMiObjInfoNEquation Native ~_1630919662;cQF[[A  v 1  ! a m 1 ,m 2 ==h v 2  anda"a M 1  \a M 2  ()*"t{}Ole CompObjPRiObjInfoSEquation Native ~ FMathType 6.0 Equation MathType EFEquation.DSMT49qBb)T ) DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  v 2  ! a m 2 ,m 1 ==h v 1  anda"a M 2  \a M 1  ()*"t{} FMathType 6.0 Equation MathType EFEquation.DSMT49q_1630919663VF[Ole CompObjUWiObjInfoXÑ iT i DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  L(v 1 ,v 2 )==L 1 (v 1 )*"L 2 (v 2 )Equation Native _1630919664T^[FOle CompObjZ\i FMathType 6.0 Equation MathType EFEquation.DSMT49qB})T ) DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  PAM=ObjInfo]Equation Native _1630919665`FOle =V,v,a M ,d M ,L() FMathType 6.0 Equation MathType EFEquation.DSMT49qB± )T ) DSMT6WinAllBasicCodePagesCompObj_aiObjInfobEquation Native _1630919696YweFTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  My[]==V,v,a M *"y,d My[] ,L()      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~v-\f'gV,YO DsBMiUשe[buv)%6&VfBvXI%=J^Xa-yy7ڨ@KYMXPw_*y HHhW tEdIdu(&p<mg(#z)BI0Sbt"n'\Jf$hBX#۵DwÏ3n_i6/u[dDd D  3 A?"?2cN3֮6f+% A `!cN3֮6f+% 2@ nxTAhQ7fؤVJ^)z&j`zK׸օl6djB"%E*6rmt =œ|h֪xu  A+̕bkS@\Ӑ~?q`#\ *vk4Kqֿ &i-WLlں|EzFo181{džg/cWcqѫq[qRߚ7r,ݣpLx'GHc✯B:7EAspWIvˮj}QRq Ɔ~@UmR.wsFh.Ylr)p\PZ~_Y+T+g h*PTGÍU1]LM`y@[b4\++#Sb MБSAd I;.wy)ޠ3Di: ZN}2BYrcpLݕ\1;.KǴ6 UaO5i(7&}Yx8zRq;bC`Dd |D  3 A?"?2{}ȯ.LW `!O}ȯ.L8`íxuR=oP9. rR@U+h$>h%&\'P DbLL0R;dA2 *,H ] , Ub'ZE0:Uy{uPߎh9ֵ2Lٿ8C\Ea}ղR"=0m yz^&ULZHfF~w݋/lY-Vo^Urn'EkWVNqeZt&KMkxڄV-l%DVT_1fY5 < e\*h"$Gx#$' "E7m>n^|V":iq(J<y>^htk \aѠs!Dd |D   3 A ?"?2&CyX[6&e `!]&CyX[6&R`++xuRkA3dďmAij$"`<: 2= ޼xEPE!!MDkgwf{3~&2 "IoGS $t:ҪXm A۲rK~Kd](K:hN%)QG0VICqA)_†qpp97hоMI{i4ܶ_7hn9G ǐx茏9#4x/P+aD1jv|ܽ8iV8Gsƈop~$Vp:Q, C27SAd I.wx(ޠD/V `Lݕ\1;.G'Iw7bX=դԓKzbq:p-3Dd 8 D   3 A ?"? 2v}x~Ixnw `!ov}x~Ixn^=xUOQXmAB@#!`4FjP/+6RzP 1FSO8LLFNzWmmmΛ7f $R*DeT/dYd2)* ƐUKR6UavªQ51 fM2D67a"Z)@ Sf2E=2W\m~}l ID.MݫVD*}{D뙩n(8}*FԖ!7ȯ59zٷgK3XѾqG6V#a?#P8ǕH 5ήc,jӹ(%L q k%(yOjvP8~NKY_Y-1`1~Cby3::VY#tYP+)9W{ȷW0>ߢMž$#UGteS|<`d6oYGkT-(Z gQJ0]!RpOpHw,x}WG`XDžh,AuWQXO zC@`TR\v%[vg|j"Op͐7蝝 UtL[-]}~@{ ])ݛnM'{lTYJHt&ߛ[ @u+Ta I >ҰtJN*˖\FE~4߁0 +>УU/@y۸cl4{+%i/reʙ (]0&xZf+Fq8>Oۖ^~%/֘6,0Dd D   3 A ?"? 2`O[騿Tbt," `!l`O[騿Tb:xU_HSQι˻eaZVX E؜\H*fSshHD`ObA| zޅ"z(rν67vws~;.# #4#:gB\NzXk^!h:+'i^iI!+wIk;l@@w+Dإ_x94n1.!}$@l -7 N3d㷓93D2|D_s3n8Lp'u -ca~hֶ+XUxW-:FMՔzq3'0w-r6QLGq e]m&G(ׅ6.mQNk=7X0@Ϩ:j,5NX#/D$ y֊X*ϷKTɮ\J]y$}#C?쒹h1Uuq`&zv*DAԪPAgJ=F巼/J&*tpdwej*6p#15Q222YEbͣgb?Eɨ:WSd7V&]ʧML)5d70P|&\v^ z3=㊇َrMiw9Vm.CfߣX8C~K#dVb #}`$Q#] eL %GB7Qgah"{KƆGp%@D8Z ~KzZJ tJU"k -n|ȬMEO:5Ɖ@#Srb5^Wqv%--Dd <D   3 A ?"? 2z<"H&[Bj5:/N8arT=Bl BaҍICGI 5({юYz ܆" 4##N[u}/]ߟH BoD7 Iѩ XCRLjTf3z}mullzPB Èsv3Z*M~:0Cfs.ƛ2-mc)=d㱐-C0nRl=r'ʔ@UW;Z#<Ƀ]_dIU29}l kEB7θIFꔏV~ (\&rAӍռv˒cp5|yw]wO2Y,R)Aw7K6͙./(ҧ_"5O..\6U3ƼYh)Ρ 9simeT3ۃ.f&է#INTne`E#)n odz xfHX B@(^A{WBqlF$^;EqKyBl`*R|@uJDqĢik?y}lBr b4/\ s9 g*ݍc]e[X'oL9~tTʞ*_fz ƜݪTGqu ^| C{E 72zi\"z~x{9W$DᷙDd TD   3 A ?"? 2Mpn8deŞ<)n+ `!!pn8deŞ< @\ xTkA3[&VJ؍xl$KƵ6 m Rǂ HEEi Qڃ 44I۷߼{3ߜ&srٶ6恷z:ۤ"X!kekm' |Xo`HEp5 4.f->肋Fb# E I`\yUTV8=4UQgaدTM`?_f6vG.'cE/Œ)3wkƷqlC#8?|J/s];p@;.qD峛*u߈>ԪdFD%_`ɵ.ȍnWQ=q^"IJ$|čX H FWM\b8}%'z44 [N¨y('vz24rD8s5&Ka+TҜuK~9ӇMO8܇}JbR<4Z8k!3`3P_T0]ZECaK G{v<& h.}DUfDМ!{=NG i3EcwXTzrkLt^Ҷ{Un c `Dd D  3 A?"? 235Mq!cXa#_S/ `!W35Mq!cXa#@\ %xUOA3@l"*BgJbI<R)T{Qb b o=pph$omJHtf߼~{[FDRD<# &gBLƒYuVW!Xr&}aT@O:a%2!x_ sC^BƅyU ϭ;rhHj7ڭ;gh]f ;N+x#V?d{}qwfl""p[[}[vGZblc DxD&\xڌxeq%MXqvc R6;BxTbgJڍJ}s\8DұC eFd|\t}[QT#pكrR"Ps$NRU/OeY37X-,,oߝo%Xtc'@)F2BMڍx`bGoGv=nHQ|n)#04:5Eg[hGuV;mwo՝wT?is= ɥت^n)yVnVׄ;r@1"` {tbH*4"N1K1݊0 E* 68%?y]2S%<(Ŋ M@ߋO1q],qaNKWlyE'9gPlls7l ѫkð{EG"K_P:9bh)4 {kb}kuK/g'Dd d0D  3 A?"?26|!f Dn3 `! |!f Df -&mxUMlG~3c' ?U#:4MdEqB"ąY[7vR  PB.HHH=TPNPz*|ޮ7dݝy3? j#RG\D#Oy&dR1g}b_U.11e^J{۱:#/B*QDhwUBz Gx(KGkG>>?y_B"`9;='CGwi=D+q hxQh{vyvu&M2~3Fj=5_;Ov?0Hv<71H10IO3F>p>tFbO#qx0/V<p#mkTV?R Zp8rr4.. i- hi Nܶ8y0ճҙRؽJkN#Ef!gvL5:e8*-axKa3ŝf\f#b 6 [Xm ׋C>Rр.0*.dEL&z]z\/ee3sUfp0jJ8}Uxz}U+)+oh.Egȧgci#;aN[PKX@>!u]aliSCt]2gK塈 bjIjU9 ki_0E:-f5R`lt0 ɄPlҙ]1вp%Vz8ܽHcүG.k\rR3V eX1_02;mH4=^ܷ/lwDr4Dd d0D  3 A?"?21Fu/JU2 <8 `!Fu/JU2f -&mxUAlSGݵǭؑ IB^P$E$X;I-H(*R)\8BHp$nHHHҞPoggwۙ j"R߸$FE,tX-%Ks* >nddžriGP$c.zlQm45Xy!m/#sɋ]Q!Ҩũ v4 8FԑQ⮝Nj\maaĸ*cw1f1lq<Ҷ xTMLCYq$%f&p֜ H)iԱE8ËCݫc기#P>')#:l*Bz#VJH1e#ͽ#h9yj_M+Nۜ?׵L+N"0T3.総W%i]y٠2ã,3V'j7sؠ2-ԼPd_3cJ #W1#5_'R\H5BJ& []z&u0ɼFőT01ZLh_'i krU~2t{I\J 37S;}K|"?adĨ9`\23~-T,[ܑɄ9Z\P줁 9 .vT+|QX:EY?s].B[a }h_aWࢄDCZ z9kª ILK5 Kq= MQ[g˵x+xYmϯWLI׵*y6E[nv@,=ԃ]JSe@]wY8ȪySS}  A Q`LqTQSV>(^c@u mW +z:ʕevY@!FCK/KBʫ5_TVk%uwV+͞Ȧs,הJeKm5SXU5XGX{ͲK:K>Л"蹙d'1d W2?Ϟ!4.Rȉdcm13io%RlǦt"BΏPHc6D#7U~NJ,.Z%ѶSd=r](91(Khrž})8]Q('{UVbҧףEis2TG+sK&%юpr7z:1 `ۧA^(Ԑ-z嬺yX~m^k(̤9Fty͓{ũj]wDd D  3 A?"?28@{"18f-xD `!8@{"18f-@ xUMLA~3-lˏF4RHbPMP .!z v&P DI 'ӋWOFp7QN^4Riⴳ;oFn"eE!R@% ;vuJ}NȈL'M 5-"Ư =A2,ƅ #DE 8y'KH[t7>Rk#0#I_يmڊi,2a`Lx$i:F|!sPEgFFPa#tWAʼn./ׇ*U}peȈb*F\%5ҽB+(jW&I'$#}~&CVx֎-&RCľn@ٮQT @yR%F>wҳ%L'AFOpo 7Qw:=DFNwπ1xXx"06vW5}צخsŶ'Á\@YP77x< ɣʵ4ڠV?ߑ_%͋@cX"ѐ 9`sQcStiYk`H image/jpeg Print 2019-08-29T12:00+05:30 2019-08-29T06:30:01Z 2019-08-29T12:00+05:30 Adobe Illustrator CS6 (Windows) 256 180 JPEG /9j/4AAQSkZJRgABAgEBLAEsAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABABLAAAAAEA AQEsAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgAtAEAAwER AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE 1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp 0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo +DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FXYq7FXYq7FXYq7 FWK6f+Y2i3/nRvKUFtex6glnJfNLc20trGYo5Vh+ATiORwzMaMq8TTY4q1+aPmLXfLfknUNf0VrX 6zpqiZ4ryKSaOSOvEoPTlgKNVgeW/SlN6hVlEDmSGNz1dQxp0qRXFWLw+d59V1rU9J8tWKahJosg g1O7upzaWyTkV9GN0iuXkdf2vgAHjiqto/nVLjzJN5X1a0/RmvxQC7hhEnrQXNuTxMltNxjL8WFG VkVh4UxVkuKuxVpmVVLMQqqKknYADFUntPOvk28a5W017TrlrNGluxFdwOYY46l3k4ueCrQ1LdMV TkEMAQag7gjpTFXYqxPzL+ZWieX9Z07R7q0v5LrU76206CZLSVbUS3TKE/0mRUheitUiNmIoRSuK p/rX6UGl3J0qaCDUFXlBJdRPPCCpBIeOOSBjVQRs4p136FVKPy38yX/mbyPo+vX6RR3moQerNHAG WIHkwoodnalB3bFWtY86pb+ZIfK+k2n6T1+WA3c0Jk9GC2tweIkuZuMhTkxoqqjMfCmKqM3nefSt a0zSfMtimnya1IYNMu7Wc3ds84FfRkd4rZ43b9n4CD44qyvFXYq7FXYq7FXYq7FXYq7FXYq7FXYq 7FXYq7FXYq8wm/8AWloP/ARP/dRbFU1/PL/yUvmb/mE/5mLiqTeRJrnX/O2rTa/Lqeja3pH1cQ+V vr0y2gtuH7q7KRSmGcyGofiOCkUIJ+JlXflJYyeVNV8weX7+rR6zqk2r6DqQBaK9guYg5VJRVfUj WLkyk1puKjfFW5rVvMP5z6R5ltSYtC8u2k1mL+Sscd3e3Qkj9G2LU9YRq1WZduQp1GKvUsVdiryv 83r+fUvN3kvyIZHj0vX7qWfWQpKevbWiiT6sWH7Eu/MfLFWSfmD+Xek+Z/I935et7S3t5Ugf9DMF ESW9wFPplSikohPwvxG6kihxVlsCGOGND1RQpp0qBTFV+KvMPzv/AN6vy9/8C7TP1vioelXf+8s3 +o36jirwD8q5pNXtvJ/l/XJtS0Gyj0l59FFlfT2qaq3qt6wle2kTj6SgMsf2yCWLAfCVWZQ2reXv zn1fzLdEy6F5itIbM38dZI7S9tRHH6NyVr6IkVaqzbcjTqcVa/NuzfzXq2geXrA0TRdTh1fX9RIK xWVvbxMwV5TRRJIstVWtdqmg3xV6nirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVef3flP8A LVvzAhgnkvh5wmtJLu3l/SeqLL9VEtHRHW4CqnNj+7FB1oKYqmHnybyTqV5pHkzzN6sp8wPMbS1i mngSQ2qc2WZoJIiVPL4VaoLU2qBiqXaxoX5b6D5s8sT3wvRr94/6P0W5OoX8j8YqzenIWuDzjLNQ q4YNUAimKpdYeQfyW8kee/L8NhpZsfMmo/WjpMoubuRR6UJEvMSTMg5JIVWqmuKp5pX5L/lppPmC PzDp+j+jrEUrzx3X1m7ekklQzcHlZN+R/ZxVm2KuxVh35i+SbzX/AND6vpEscHmPy5dfXNLeevoy A0E1vKV+JUmVQCy7jFVO8uPOPmbRpdEuvL82gHUImt9Svprq1niihkHGX6qbeR5ZHZCQheOPjXl2 4lVmoAAoNgMVdirDvPPk7yJdRS+ZPM4umi0dTfCZb+/iS3NulfVhhgmREkovWNeRPviqZ+j5e1Hy Yn+k3EmgT2iTrdLd3SzNbcRKGN0sguDVR8RMlSNjtXFWK+WvI/5WeYvJuiX+nW12uh2bSXmkB9Qv 43tXJCSFWFzWPgYenKinkRQs1VUDpvkn8k/OVl/ysNNNe45s9xJfzXN4kgayJQu6CbjUejXfr1PX FUWn5a/k/wDmPHH51n0h72XWUWRriS4u4XPpKIQrRxzKilBHxIA7Yq9LxV2KuxV2KuxV2KuxV2Ku xV2KuxV2KsMbzB54v/Meu6doltpgtNFuIbYyXslwsjtNaQ3JNIkZaD1+P0YqiOf5rf740L/kbef9 U8Vdz/Nb/fGhf8jbz/qniruf5rf740L/AJG3n/VPFWJ+YfLnmPTHvvzD1f6rJrWlXNpdRx2BldF0 q1jeK7hrIoarR3M8my0qFxVR8y203mGfzX5s0+s0vln6mmgSKRxeTTWXUbrh4+sZBCa+GFVvmC3H nabzJ5i0z9+mgWFqnluXs17GY9WkdT2LcbePbwIxVQ1WUebhr/njSwZf8P22mTaAVpvJaquq3Kqe /qxzpCfkRirLbTzh5o8xajenyjDp02i2S28f169knUyzzQi4dY/SVhxSOWMH/KrgVHc/zW/3xoX/ ACNvP+qeKu5/mt/vjQv+Rt5/1TxV3P8ANb/fGhf8jbz/AKp4qluieYPzO1dL1obXRIxY3k9jJzlu /ie3bizCkZ2PbCqZc/zW/wB8aF/yNvP+qeBXc/zW/wB8aF/yNvP+qeKpfrehfmL5gs49K1T9EQaV Nc2z6ibaS5aZ7eGdJZIkDxhf3ipx37HFWMXkz2Xl7VvyzR+FzPqsWl6aA1G/ROqsbnkKb0ht1uIv 9hhVfrEkmiQea/IunUtptbu7X9BKmxWHXCYrpkHQCF4biTbpiqjr8K6E3mLyBYKYIPMsunDR41IA WDUaWV+FPb047V5D/rYqmS65P5KvfMHlvTLeOa9utQtbnyxYyEpGw1diJV+HpHDNBcSNTouKso5/ mt/vjQv+Rt5/1TwK7n+a3++NC/5G3n/VPFXc/wA1v98aF/yNvP8AqniqXa95h/MnQdMbVL600aW0 hlgSZIJbr1CJ5kh+HlGF29Su+FWeYFdirsVdirsVdirsVdirEfJ//KYee/8Atp2n/dJs8VZdirsV diqyeCGeCSCZBJDKpSRG3DKwoQfmMVSfyh5P0fyp5dg0DSw7WMBkblOwkkdpnaRzIwC8jVqdOmKu 8neUNH8paFFomkhxZxPJIGlIaQmVy55EBR8NeK7fZAGKteT/ACZonlPQ/wBC6SjfUvVmmIl4kkzu XIPFUXioPFdvsgdcVVvKvlXRfK2iw6No0JgsYWd0RmLNykcuxLHc7tQe22KptirsVdirFPy8/uPM H/bd1H/k7irK8VdirsVSK88l6Jd+cNP82yq/6W023ltICCPTKS13ZSCeSB3CkEfabrirtS8maLqH mvSfNFwr/pPRo54rXiV9Mi4XiS4KkkoOXChFOR64qu1Pyfo2peZtH8x3KudR0NbhbIqQEP1lODc1 IPLiK8d9qnFV975S0K98y6d5kuLfnq+lRTQ2c9fspOKNUeNK0PapxVOMVdirsVYj+a//ACgt7/xn sf8AqOgxCsuxV2KuxV2KuxVSu7q3tLWa7uXEdvbo0s0h6KiAszGngBiryr8kvOvmLVdY8zaP5lZ1 1H1otZ0+CRixjsdRjWWOFDUgJCCg49ixG+KvWsVYj5P/AOUw89/9tO0/7pNnirLsVdirsVdirsVd irsVdirsVdirsVee+XvNGl+WdR1nS/MfqaO93q93c2N3eIY7OeK4k5RmO63h5Efsswb2xV6ECCAQ ag7gjFXYq7FXYq7FXYq7FXYq7FXYqxH81/8AlBb3/jPY/wDUdBiFVPzTt2f8v9euorm6s7rTrC6v rS4s7me1kWaC3kZCWgeMuteqNVT4bDFWBfUo7L8krbzfJ5h1Wz11NHiv01CbVb2ZHvGgEiI1vPNJ buJZCF4en32xV6j5R1G/1Pyro2pajF6N/e2NtcXcPErxlliV3Xid1oxOx6Yqm2KuxV53+cfmfRod Ij8pSavaafqfmOWGzb6xIB6VnK5+sTSoHjb02jR4xV1DMacsVYV5wv5/I/5xeVfMWta1pjnUYG0n VbezgawMdm5PoTyxSXV2zRiXq/wqPTp8lL3S1urW7torq0mS4tZ0WSCeJg8bo4qroykhlYGoIxQx byf/AMph57/7adp/3SbPFWXYq7FXYq7FXYq7FXYq7FXYq7FWFef3/NIXEA8ppanS+Fb104NqXqVN RAtyUtacaULk79sVYtA/5apNFL57XVf0gpHGTzasptQ3+RwrpY3/AJcKvVZ9R0yz04389zBb6bFG JGundEgWOmzGQkIFp3rTAqzStb0bWLb61pN/baja1K+vaSpPHyHUcoywriqEj82aE/maTyyJpF1q OA3f1d7edEaAFQZI5njWGQBnAPBzvt1BxVN8VSmTzf5TjvTYya1YJfK3ptatdQiUP/KULcq+1MVT bFXYq7FXYq7FWI/mv/ygt7/xnsf+o6DEK1+bmqaZp/5beZPr93Da/W9NvbW19Z1j9WeW1k9OKPkR ydqGijfFXl2kD8i5Pyk05boaL/iI6VCD9TFv+l/rwhHHgIf9J9b1fx64per/AJXHzafIOjnzby/T /on616lPU4829L1af7s9LjzrvXrvihlOKsTX81/y7YBk1yB1P2XQSMpHiCFIIxVv/lav5ff9XqH/ AIGX/mjGld/ytX8vv+r1D/wMv/NGNK7/AJWr+X3/AFeof+Bl/wCaMaVA/l1q2nat5i87X+nTrcWk 2pWvpyrUA8dLtUOxAP2lIxVnOKuxV2KuxV2KuxV2KuxV2KuxVhH5gWX5nz3Nu3lW7hj0kIBfW0Rj h1F25GpgnuI7i3Hw0FGQd/i8FWN2g/LKzuYpvOun39tqiEFbnzZ6l3AHPw1iuC0+nrQ9OBX5YqzT zT5Wl8xny9PYamtpZaXfQ6g8KRJPDdQopAioSFAKt8LUPHqBUAhViflG0a8/O/zPr2jRiPy6ljHp 2o3Ee0V1qsciszKAAHaFOSO3Y7d8VXecNesNB/N201S9mihig8s3np+sxRXlN5CI4wVWRyXaigKj N4A9MVQH5q+bPzBT8mdW1S40dfL99P6ERigu2up4reZwsrOyRQCNqHjsW69sVek6b5f0BfK9vokN tFNohtVgWAqDHJCUAqw78huT474qwr/nHvU9TvvIc0V5K09tp+o3VjpU7ksz2cJX06sd24lmQewx V6ZirsVdirsVYd+b08UH5f6hNMwSKOayZ2PQAXsOIVW/5Wr+X3/V6h/4GX/mjGld/wArV/L7/q9Q /wDAy/8ANGNK7/lav5ff9XqH/gZf+aMaVpvzX/LtQWfXIEUfadxIqgeJJUADFVv5Rf8Akr/K3/bM tv8Ak2MVZdirsVdirEfJ/wDymHnv/tp2n/dJs8VZdirsVdirsVdirsVdirsVdirsVYT5/b801urb /Ca2x0nh/p3p+mdT9Srf7zi6K2nHjx+3vXFWM2Q/LA3kQ85yak2qhh6S+cPUWEsenpKaaad/99YV Zj580/zjf+WV0/yRLYWs9xxSS4upJokS1pusBtkdgXHw8gV4jdTWhAVLfIWgfmRp+oW6+Yv0JZ6H p9lLaafpmgfW0jLyyQsHljuBxPprCQhG/wAbeOKoDzp+XOq+Z/O41HUNK0rUPLy6ZLpaxXN1Ml0p ndZGuYwLWRYpEoUXi9aGvIVpiqyDQPznTyLb6DO3l+/1G2ZbeWa+lu7i3vLAxSxtHcILeJ/UUmL4 gTz3Jp+0qpWvkv8ANaH8ubry/wDW9Kj1NrsC0ijuNQ+pppnporWvrEfXF3DU4vUA0DDpirKPy50f zfpGjvY+Yk0q3SApFplnogmW2it0QCh9cB+bNUkknFWWYq7FXYq7FWI/mv8A8oLe/wDGex/6joMQ rLsVdirsVYj+bv8A5K/zT/2zLn/k2cVd+UX/AJK/yt/2zLb/AJNjFWXYq7FXYqxHyf8A8ph57/7a dp/3SbPFWXYq7FXYq7FXYq7FXYq7FXYq7FWH/mBrvnzTFtV8saKuoQTVF7f1WZ7YVoCtn6lu8/8A sZB8jiqVeXPKugecLD9J69qN/wCZeEzxTWOpRvZWsM8LAPG2nKsSVRl/3aHPvir0OGGKGJIYUWOG NQkcaAKqqooFUDYADFV2KuxV2KuxV2KuxV2KuxV2KsR/Nf8A5QW9/wCM9j/1HQYhWXYq7FXYqxH8 3f8AyV/mn/tmXP8AybOKu/KL/wAlf5W/7Zlt/wAmxirLsVdirsVYj5P/AOUw89/9tO0/7pNnirLs VdirsVdirsVdirsVdirsVdirsVYj+XH+83mD/tv6n/yfOKsuxV2KuxV2KuxV2KuxV2KuxV2KsR/N f/lBb3/jPY/9R0GIVl2KuxV2KsR/N3/yV/mn/tmXP/Js4q78ov8AyV/lb/tmW3/JsYqy7FXYq7FW I+T/APlMPPf/AG07T/uk2eKsuxV2KuxVi1z5/sLf8w7XyY8DGW5s/rP10N8CTMXMduy0+1JFBK4+ LovTuFVHzN5+TRfOnl7y79W9aLVi/wBduQT/AKMGIitSR/xdOeGKu84+f08u+YvLukfV/XGsT8L2 apAtoGeO3jlan81xcRpv4nFW/Mnn5NF86+XvLpt/Uh1f1BeXdf8AectRLXbv601UxVl2KuxV2Kux ViP5cf7zeYP+2/qf/J84qy7FXYqlXmrX4/L/AJd1DWZIjcfUoWkjt1PEyydI4g1DQu5C1p3xVC2n nPTJ/I6+b3BhsRYtfzxMfjj9OMvJE1QPjRlKH3GKoXyf53TWfJA8x6nB+jpbZLj9LWpqTbyWjMsy mtDtwr8sVQflT8x11b8vrrzXqVp+j5tPS6fULImvp/VwZFFT/NDwb6cVTTyB5pk80eVrTVp7f6ne uZIb+yNawXEEjRSxmu+zL37YqyHFXYq7FWI/mv8A8oLe/wDGex/6joMQrLsVdirsVYj+bv8A5K/z T/2zLn/k2cVd+UX/AJK/yt/2zLb/AJNjFWXYq7FXYqxO8/L9pda1LVrHzFq2kyarJHNd29m1n6Jk igjt1YCe2ncfBCtfixVb/gPV/wDqdtf+/Tf+yHFXf4D1f/qdtf8Av03/ALIcVd/gPV/+p21/79N/ 7IcVSjzF5Al0zy5qmqWF9eav5jt7mDWre7vmhMry6cgCQL6MUEYR4Q8dOP7Zr1xVKbW0/wAe+X/O PmfTvjk1ExQ+WJaHkBo4E0DA9fivzJXjhV2lW6fmVonmrzJbAquq2UGm6CxO8bWkQueYBFBS+lIP /GPFULoq3X5h+WPNPmq1jMeoXcNlb6IrqecdxpMS3agA9KahLIpp4YqnPlW91r8xUufMdrrmpaFo Telb6XbWQtVMjRxhrmWT6zb3B2ndohQj7GBU+/wHq/8A1O2v/fpv/ZDirv8AAer/APU7a/8Afpv/ AGQ4q7/Aer/9Ttr/AN+m/wDZDiqFsPywuNPWdbPzhr0IuZ5LqcBtOPKaZuUj72R+0cVRX+A9X/6n bX/v03/shxV3+A9X/wCp21/79N/7IcVU5vy2e7e2Gp+aNZ1O0t7iC6NjctYiGR7aVZoxJ6VpE5UO gNAwxVh2rI1rr11+Waq4tvMGrQapZhF+EaZMz3eox1+yFE9rInylXbCqp5t9S2816p5GjVxB57uL O6gK1KiLiY9XAHb/AEe0BPvJirXnWBrbzpceUIo6WnnyXTp1VFNALJiNTHEbfFaW0Qr74qiNevtY 0XznqXlLRnktLnzlc2l/p17EFf6uOJj1WQB1dQUitVYVH2pMVZV/gPV/+p21/wC/Tf8AshwK7/Ae r/8AU7a/9+m/9kOKu/wHq/8A1O2v/fpv/ZDiqheflpNfwi21Hzbrl5Z+pHJJaytp4RzDIsqhuFmj U5IOjDFWa4q7FXYqxH83f/JX+af+2Zc/8mzirvyi/wDJX+Vv+2Zbf8mxirLsVdirsVdirsVdirsV diqG07TdP0yyjsdPt47SzhqIreFQiLyJY0Ubbkk4ql3l/UPJqPPoXl+7sPV095PrOmWUsJeBzIfV 9SKMlkPqseVR9rFUx0/TdP062FrYW8drbB3kEMShF5yuZHag7s7EnFVS2tbW1gWC1hSCBKlYolCI ORLGiqANya4qq4q7FXkvnmwlH5x+S9Pj1PVYNO19NSbVLKDU76CF2tbXnEUWKZPSo25EfEH78Uoz Xr68/L7zb5eaK/vLzyx5juxpd5Z6hcS3htrqQD6vNDPcNJMqsQQ6s5Wm4xQ9OxV2KuxVDSaZp0uo QajJbRvf2yPFb3RUGREloXVW6gNxFcVS7XL/AMm6dqenXuuXdhZakBLFpc97LDDKRJwEywGQqTX4 OQX2xVMp9OsJ7y2vZreOS8sxILS4ZQXiEoCycGO68gADiq97W1e4juXhRrmEMsMxUF0V6cwrEVAb iK064qq4q7FXYq7FXYq7FXYqxH83f/JX+af+2Zc/8mzirvyi/wDJX+Vv+2Zbf8mxirLsVdirsVdi rsVdirsVYp+aKakvkXW77T9VutLuNOsLu7R7P0QZGhgaRFdpI5WVeSj+7Kt74qq/ljcXFz+XPlm4 uZXmuJdMtHlmkYu7MYVJZmNSScVYrqOsWehfm75i1e5jZ4bTyxazSpF6YkkK3cwCr6jRqXbZVBbf YYqhPzK8+a9PoHlu0srPUfLLeZ9ZttMmnvPRhuoraQqXdfRkmMRflQcirji2w2OKsl81eQfKsHlf UptNsYtK1G1tZZ7XVrNRDdxyxIXWT6wtJG+IfFyY8u+Kon8p/M+o+aPy80TXNSQLf3cLC4IHEM0U jRepQbD1PT57eOKstxV43+YPmryxb/nj5CNxq9nCulJqw1NpJ4kW2M9nSITszARlz9kNSuKUV5xl 0/8AMnzP5Y0fy9cJqWkaJqCavrmqW5EloggH7q3WdfgeSXkRxRiVG5xQ9axV2KrZFZ42RXMbMCBI tOSkjqOQZaj3GKvMvy7uNYj/ADW8/aRfavearb6dHpQtXvGQlfXgeZ6JCkMK/FIfsINsVR/56Krf l7KSASt/ppUnsfr0IqPoOKpsvn1ZtY1XTbTRNQuI9IEgutUUW31H1I4fV9JZPXMjPWiFVjLKx+IA b4qxP8ndOsPOfkuHzZ5qt4Nb1XVri5k/0yNLhLaOOd4kggSQMsSAR1ooFa74qiPJepXmk/m35i8j wPJLoEVjDqthHIxf6o7lEeCNmJIjcvyVOi02xV6dirsVdirsVdirsVYj+bv/AJK/zT/2zLn/AJNn FXflF/5K/wArf9sy2/5NjFWXYq7FXYq7FXYq7FXYqxn8yItVu/Jmr6VpemT6nearZXVjGsD20Yja eB41kkNzNAOALb8an2xVQ/K6LW7LyXpWj6zpE+lXmk2dvaSetJaypK0UfAtE1vNMafD+2F698VYJ 518jeYPM3nvVtUbQdQtUh0yODQNXhurJWj1CwnluYZxELoHjK3FU5rUV+IJuQqivNMn5leYfKOm6 dqv5fyX16QzakI9TsbNoLuAxm3urSYSXHWsnwldum46qq/mP/lbep/l5ptjPoEtzqd81xB5isLe/ srWf6qHYRAXRDw/vY+Ik9NK7mnDFWa+QE1aPyxbQanokXlySAtDb6PDMlwsEEZ4xD1YyVclRUnFW RYq7FXYq7FXYq07FUZgpcgEhFpU07CpA+84q8u8oWfm+z/NPzTr955XvbfSvMo09LeZ59OZ4DaQe i7TpHdueJ6/ByPtiqa/nNpOu635S/QmkaPcarJd3FvLM0M9vbrFHbXEUzBnmmgfk6qQnAHfqRtVV JvLVp5+8oz65pWi+W7q68uTQvf8Al2O4ubENaXs8Rmks5K3TMYfXbjyFaNX7Snniq38urX8wtK1D V4B5Qby7odxBc3tpYvqNpfRDUnZCqQ+l6TxRyfEWViVB6FcVX/ljZ+fbfzLeXnmDykdNuNVDTat5 guNRtL2WV41VYLeKK3CejCgrxWh9yTvir1XFXYq7FXYq7FXYqxH83f8AyV/mn/tmXP8AybOKu/KL /wAlf5W/7Zlt/wAmxirLsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirs VdirsVdirsVdirsVdirEfzd/8lf5p/7Zlz/ybOKu/KL/AMlf5W/7Zlt/ybGKsuxV2KuxV2KuxV2K uxV2KuxV2KuxV2KuxV2KsR0X/wAmh5q/7Zmjf8nL/FU6vPNHl+y1u00K6voodXv1L2dkxPqSKOVS op/kHFU0xV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KsR/N3/AMlf5p/7Zlz/AMmziqSeQ/MOqaB5 L0XRb7yvrRvNOs4ba4MVvE6c40Ctxb1hUVHXFU+/x9P/ANStrv8A0jRf9VsVd/j6f/qVtd/6Rov+ q2Ku/wAfT/8AUra7/wBI0X/VbFXf4+n/AOpW13/pGi/6rYq7/H0//Ura7/0jRf8AVbFXf4+n/wCp W13/AKRov+q2Ku/x9P8A9Strv/SNF/1WxV3+Pp/+pW13/pGi/wCq2Ku/x9P/ANStrv8A0jRf9VsV d/j6f/qVtd/6Rov+q2Ku/wAfT/8AUra7/wBI0X/VbFXf4+n/AOpW13/pGi/6rYq7/H0//Ura7/0j Rf8AVbFXf4+n/wCpW13/AKRov+q2Kpb5L1VtT/MTzVctY3Wnkafo6eheoscu0l/8XFWcUNfHFWC/ mnetY/8AOQnka7W2mvDFZykW1soeZ6+uKIrFQeteuKvTP8fT/wDUra7/ANI0X/VbFXf4+n/6lbXf +kaL/qtirv8AH0//AFK2u/8ASNF/1WxV3+Pp/wDqVtd/6Rov+q2Ku/x9P/1K2u/9I0X/AFWxV3+P p/8AqVtd/wCkaL/qtirv8fT/APUra7/0jRf9VsVd/j6f/qVtd/6Rov8Aqtirv8fT/wDUra7/ANI0 X/VbFXf4+n/6lbXf+kaL/qtirv8AH0//AFK2u/8ASNF/1WxV3+Pp/wDqVtd/6Rov+q2Ku/x9P/1K 2u/9I0X/AFWxV3+Pp/8AqVtd/wCkaL/qtiqQ+fPMOqa/5L1rRbHyvrQvNRs5ra3MtvEic5EKryb1 jQVPXFXpOKuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KsR0X/yaHmr/ALZmjf8AJy/xVKfNH5da 3q35t+WPONvPbJpmiwSRXUMjSCdmcS09NQjIR+8HVxir0TFXYq7FXYq7FXYq7FXYq7FXYq7FXYq7 FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYqlVnoCW3mXU9cExZ9TtrO2aDjQILNp2DB q78vrJ7dsVTXFXlmreftV1bWtetdE1e30uHQGksbC2aS0SfVtWjj9R7YPdh0SKNisbcRyJJPJcVZ 1qWj3GveXEtL+W40y+mhVpJLC5mt3guDHQ8ZIHjZ1R2+ySVNNxirA/yQ1hpvy/1SHzDe3T6xo11e WXmK4ury5mkV7ckl0aSRniAiIH7unxKSN8VZH+VejXVl5Xg1C9u9Qur3V1+uOmoXlxdmCKVmkggV ZpJAhjidVYjdiNydqKsyxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Kux V2KuxV2KuxV2Kvn660/QtA0X81tC1mJB5g128vLrRbdxymvoryPnYi1X7UzRXBblwrxbrir1/wDL vT9e07yPoljr8nq6vb2kaXbFuZDAfCrMftMq0Vj3I74q8t8zaLqun/nDe+XbGJjon5kW8El+y7LH 9ScfXv8AkbbB1P8AlSDr0xV7oAFAAFANgB0pirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVd irsVdirsVdirsVdirsVdirsVdirsVdirsVdiqk/1T6zFz9P61xf0OVPU4/Dz4V3p9nlT2xVVxV2K uxV2KuxV2KuxV2KuxV2KuxV2Kv8A/9k= xmp.iid:7499662A26CAE9118AE1F63A866DBC4B xmp.did:7499662A26CAE9118AE1F63A866DBC4B uuid:5D20892493BFDB11914A8590D31508C8 proof:pdf xmp.iid:D1BD97C68373E711894694D87D185F4F xmp.did:D1BD97C68373E711894694D87D185F4F uuid:5D20892493BFDB11914A8590D31508C8 proof:pdf saved xmp.iid:D1BD97C68373E711894694D87D185F4F 2017-07-28T17:29:22+05:30 Adobe Illustrator CS6 (Windows) / converted from application/postscript to application/vnd.adobe.illustrator converted from application/postscript to application/vnd.adobe.illustrator saved xmp.iid:7499662A26CAE9118AE1F63A866DBC4B 2019-08-29T12:00+05:30 Adobe Illustrator CS6 (Windows) / Print Adobe PDF library 10.01 AdobedC l s   ! 1A"8ғUvYQB#ԵVwaq23فRb$9Cu6WS%7(rcs&'?/r 7ZSm;¦H.p2({t){j:+cϨ{?Nd#7+f1*\9KhYm7H%6TT*ZrX#\uvޏvp _de%ЬBEՍF\mr{tUE -ofy &$ey=7C}:uRG$;4sDMUt@k6 vGl-j9[]Z{ߪG4(j,DUDW95P*8;Ӿ9m&حήCqi_s @cEr;U=#X$eE56۬u,F VZ榌 9sW='Tͼ^rٰ;]7c9) &풒ekPYs'k^x5G5Qrj'j*(@p]˹aY{)M#yNA6KlF7ѲzsU]4a.r'~\·!ͭEQrGbݪhgOXzH9{ɗɦF 8~lubTiE5J='ɢ|u/\+y uEƶ}ʪY*|ҽ~'iUr@\qk)țݷK Yb:zjΦQ^1hq71Wn{q߭%WIԴY備e|.k#ѪoSv|׃-rG=洱qi(jtUk*j1W#^wP\d{qz0:،9̩F5$lY㕍D$W9H`".[-M Y<9|JS~Ȏ{܃=\?fror[u_>+G52Hc5F ܈;).L̒ʘoҒ^lsl^UʺX-w.к|^P㔖x軿-Jt}u[=}MI2U#~kZvyl}fotˊb4oW;zb;^1;\FjEW>%ל?3bxeIk0Nh.+fJ*>Tlgcůuƍu&e[3'J+ed_FX} ;02Exmo~QIe+( W[USFz5kZj@E +<$5n|Hآr+,TkZ٭jUŴ< ,%6Z_IzJ*@ ձ+"UENPjݒ휎ݽkzEܪV%>y@ҍ-͵[h)JHR.~U|h<ݕvԸbƒaiX*wO񮚮k_0ipn*oR--=ݝ:vOq-_:GdnW]*'[Emhԥ'T&1jFv ᯿4vUq-)ylpEF)ql#ZY} 7]e^W=)7V\XX-}Jiv:9^_K+zK$d[Qlg(qۍ\oOmZ*.8=EB2 a:::9;ΤV?hn6aK7 poq㸆9R]G,M4-lP2I&kXUs_u֞vFhjy3;9hidK;jr[e[UXʸ""^w?r#!`|e^%}AY,t)*S9cI)*XuUs]#Ȫ4 9qk}x˳|5 XiNFHƣѪ<;kn^sϘn2n./;hӭ*kjݫ`iEs*=֠Iov;j.U-nJzOmP"t9:x9K}NKY GtIS|NDԝ0G^uPV-~ɋMf2G =¢],U_sޮӧE׹6alFATYtrԑi&g8}j(9SF̓Ҿu7DΌdz/U@|ő+=ɶom0RWWzO nW_iE+Ò9;Vޠ휲.3UU&cwspUe|~#.4kmՈ/ҤUhw lWcȹ)++r=XfDsQQ<i_Xm9ǟvjjSujjIe' j ?UcQQ{ڊ,v%؞~!dvÏpUMgl=Quowӯ[Qzh=7zWÔlx *۔-:'>Tv׷]9{ĪG7duMWAY~!yaTh)i\ZH}4שuD@6{ʝd+g `SVd\(VvSGlsy_Tfsj=<owm61\e2KdO[m$~l{'l NkPx?{sC]o>v5d\T*dJ8D{$}6j ώ r#9~Zntr+[MzOs.iPԻDֻW_& <\T[Fy>= }%Up&m45ԱQYz0fe|˸o0ĭԿ"ХjiYVHb]@Os?uM>uC%ƵR2s\O`G5ɫ\sØn1lюQeN_~KU_ItwPy[,3{kICtCbkj**z9lme;ӳUQyIJ6qY9T[jOWBʈ*Ǣ@[vjtnlX%wGKK 2;FrU'.vvpkIdز;K RDȪ 7JlNr'k[u]ºT0QYU*(jrUU\僘7 ޶͌b8š\~|WYP'&$E:76][0S'orlN[yΪ;UMPẋs̯lv0(.xTEUP6Z*Q#34oּZ|u)Ge-7KcR馑,b1,'*j3Go*˩sn=mEG&גYl;EOq\!^祪C+ױȨ q&2CX6fW/V)Uzv#:TMZ*'7iw=U%]M"-堚I{WGL^ [Zyz[Evl.HS"){s4T$LF%*Zx[[:,7G"j`G'gdm`o@lލ< TeF93SX2g":7V_:-2yk Mѫܞ'`ԏmLXOK.,Y\G#WR@op Q͎?qf'0NnO=Q/Gh%<=>M}{ut Lg|um~#sUUζIQ43"jeDQE@B2 N5cG%V?ܵ}4C=LjuW*(ޭ@qm.NBٛv:*u=}uTT@@naĽÊ#`x,Z|UzJRmC۪ śqpkKA⡮N.٣fZVGڮ܈'ۉWq'0Ywnn1x_+rq|<\Ԡ ѲyE^wmQ༌{mE)_yW]:7I"- xYxyOfYlRL`|WE"Uj.LqucH>8,1}% 8ﺿıt}W?Ԁ}q_XRƣKPMM6krCPG+B\*+]BT| qK;TOgħm͝Q4 6:|Lɕ'Gi<~q7Pgs%.p/xuR;E;nG;?_G4oTm;%Tg-LK{VJWz)| üM?YjöS؃t!=bҊxHQtWueQ@x]b׋ng$2ufgTzmXQ\ }RM<V۫#oUh9Ev$׻JJM%ɦLM;T^oiu)[wWjh("jU-[؈`䏏^!ٛJ[pŻxC#JG>FY%S5M n>8,1}% 8ﺿı;xAaʲ|oYNUmYxni_$4L>R8`n>8z9ރQG3M//zz0GP1JN5ҹ(r/\M{@vxFT)ڽJU+WW'&x>e\Zժ&gQZ3i E"6I ڟd<[lm{6Zwj"'R=eJ|ݼR OÌGљ2:":SLGQQ"^*lʎ`p+p=1bVT#{5diM@|Pk"qjn1si(upAS.m+N;T'Z.me #g癵2<\QzozV+dbM3QڧyNq_XRc?K@LqucH>8,1}% 8ﺿıt}W?Ԁ/&_s,re0ׯvx˝˒U|t{&Īoڽ)?v=ح&jpbCuF"5p[%t'|H(\s̓i;`l+.7,NdT23#cVX\]Q*|ڴAV]KR$X]Jțګ_Tw2I&n6k|3?W[fn;\wnT`s5Vv t ojȑt@μ/ߴ9n]E'6eӾH!c-TEM:$oOViY1ol5Wʰk*s薬pWLuξQGO S2]OJ5r=*"TsוX-{u4'ERtS-2"'7MM &2?= Vot'{,qUãy6}k3?0e4*t`nn;=W{uˋ[eۅ=mFV%5 ݫ܉cTO*蝠$S~t5U\,W)|TEUDcm*cT]9dliW_tsFb*@L~+^a\Z+墪*i?Ԓ'99TEį7|V&,˵"W1[DVYKJUS[*o;ǭ.\$1b]i. TO"z/VU4 mzag ~pÓ8q^WLWfΫT.H] D sֹ4I#dE@j0 k .QvOk՚w.Ւ9j*"k܄7D:8aр m!̻(co"sݢy*T^[xn[U )nVș==DY$R"9cڪkQS@n]-ݭ*ښ^\ ډ(zlz\]u(6Gf7/u (]Q\iuO_Ipeyt7ٷ&6[w{ٕI#%mƭM9crɠ [4N6.rx h}Zf*$Vs˪. mzag ~2sg$pg[bKؽU]+䤠I 囡@.ɹWb|wvW-݂I^*5ѕil[:>3j%m޶e-MLC(뻕I; sېUfh@wXo:0]k/>4=o,+m54 f:T}Qwq7WMM dyb I,0ZʇuS|}7W%VzH&wg%[q[ .M[%r-;Oq\_ӵV*\ |(ķ7|ĚŲ)h1w[uUKcZMUj5kXC>BQ8?gQcc^mV㦣GYo;kbV6ԩt}G$sGbb5EENEO"76H}%ujKOpe|$sC$OCGSIۯa }K|9mQW%ΊSW:_-KdWWRݵ_8ܶ;-<Xhֺg$6YcQr|<2xEvW/T39Cỳ__wɒynkmU$(Y^맫_K] mzag ~VVQ۩j+pR1eEڮ{ި֢yTb-E-vQfUY=1E'֑EI26}{o}&MT͵nSSҥ;[-=4ޮj;u;zW' ܻkM n!u,&̉ΗQ i]9oNó;S_*q)+ƉU3SULJ*$z+b|IU3@w8(/Vtzhzu;mOPѹi$sF#9:|RRGYE] *(r>9b=MQZ** [MLirFv©ilSDRWT˻*סun]4W K$> ֮}=]x,*=UW9ʪڠ 1lc|@-YL{:aVZlwj#-߼f1ɩW>m(j=Oȫ',ըI݆߼`1iWw˭ؠjLk r$ѪY=͌oeC HYb,{L[BnEbޔn\Ec2?= Vot'{,qUãsv B+T׬Z,Vm9Ҷh*mN]""T >2eeqE,"H>5ڊ~YvWVhdKV/R;\q]V7{Uy9f˞_`礶OkdFUG ;Jn1ljߖmEֺɨ*jtGjֵg4f3º?qlQjnUOD9iF5'4(f9mO|4@q;c?ʬ7>{ŻGzoy% ȽsܯUsuUP~n|7"?Mȹ_{m.W>n|7"?Mȹ_{<@?8N:ܷ+mm\k-%\=\l9蝊>B~>9:][$jVPDQ}LJ[ix]֙KU[cKm4kv|2S7UE^NUs0NE[|uKq;]//>/[|oT^hoc;ExrK-;[d7)Q"9ʮwkҩ5r4PU0V3l<^E% svxICX ղMډ+ϖP_m9E˓XkqdT;-s[=%\M QFz*"/@Q{H9 !wn(n\+fAt5VW ^̍#FJJG+޽SXl~ɑc k9}\O=%Dm "Ts876܋'~?S.OmwAքmUdf|GԳOG:>)DY7 e&rc q58bnTHlUtʰeV/OKO#\ێ37 IugԏMjyKNb>RL%jkK\\MͶr4ˌg[PbXKY ^j-EeTRt3NDEr+u-8 {d tL^G'K'ڊtO?{*_ ^'}2Yro KN)8ъj#O2vCp\}6+opt7 E~ orCp\}6+opt7 E~ MK.ﹼnow?KۦC{Y~߾ mzag ~tc9wvqw[٭3E]*lWY'Tn%F+O*LݭjQNf_`Tuy٪'UjB^V>Y;-r׊Cl6bؙ {dtղErQQTA|ߋce\[>k^1;qZFx>%`9fdz}M%%f IYq{؎ꊬNvq&/X1Dm$FSMtX|X']qg&q`ͩln{%*Ihn$mx&loWS[MUȸx=Tv׈٬)jKomR F[eOWf21*Pcㅚ׳G;W-r;V1KY:z u.gSHXz;]֍@&Zz8ٵyfsyqbb βwCsYIG+UJpfhk7̎a7,^+I'D$6j]e4sv"&4vo~Vx8m.m貸XrtE=E]DQyI"YW66ۢ*;c~+YFlG lI Q!: NXmi4jb5*7_܄7D:8aр   me~f ~&ϱ])sw]ԽGqӣOK^4#?0of͛2U)3$j*ʹ;q&_?!ܫjjhOu`eV-T[k|"n&eӬ} cnB}UiUa6k|3?;oſ"؝w`tյ^s'F#tˠ;}-QswR誶.'fb5ڤuWDJEV9'g{Ku&Xmq ֓>|wz6#W5uk$EF2?= Vot'{,qUã@TLckֻ<SdwiGi,t}u{u=MLM*\%O2oIˮW}UQ?Kb"S܄7D:8aр   me~f ~&ϱ]) me~f ~ sېUfh@wXo:05@!Z Oy6}k3?0ׯvx1)͍9k.UOb3Y-D+IpRAOSSAO ~(\X_٦6p|qKu6;ZYrʫΓ,. ڋ#ѵKɬiغ DDzF6H܏cǵuEEEEO.W. m#b[VIwZׅҊVTA$OU Y5 q+p,iV5G+aSUO;Q/ =ϾoWÎr{s}\zےXe{twb(oMS+WzXkmvjz$Hts\_w`2.Ulw#TS^/0DtTTK F62wJ"4s?qʏ[ESZQ yyzeɌ=)SQNZzmuMi#N+z++9quo~Wc,ZdUD$3Qurm~dnV}uU O-]¶e!bI5EUP<z`\ymؽf _KSQ:^\E$,hޖmѨ7g0l?+ͯR$Vl:_|JFS2꽉#^|?q{{tw=fZeP~I{㝊=Sˢ7 cnB}UiUa6k|3?x<"C_'[&/l*{?GKE 豊>i,6]l>gn$;srrS]nEծVdRċCziʬ6}+Uo]U=$VU94U\ ݵގ(YUVuM#Z+Kꙑ2e7rpG2B2i]χNENSέT'G/ͪ5o~W e.;&w'jtQk5Ԁ `xC{Y~߾ŭ\>`{{3}Ɇ+z]rԬvoZdUu@|13G3Y/fS%yhjڳGPhNP~?)6c8ZÑWp-j3UV-5TD6*)-wz٭b틵S|S܀m[DCD1TNΤ_S5;mgOVM԰<ק+*b&2O>c?jh9̞Rwt8qUU9M G4SXF5v`^(Yn;x$ YpO*IMM,_W(9f[OM(;\{Soa靔BQEW]U5tkPfd~{r NXO F;?57]){ݲ{]m['c zGKS%$TR)c%EEj.}6+opt7 E~ orCp\}6+opt7 E~ orw/ 5,cQQuOMcTڀiܶ og+vJ>X&I%sc{Ts^P7Kc}YO|6}ȯYCaGut:J_8Rxol[}mq6wTKy,l]+ҍrupnWhsa2Յ5;͇B68TힻFA #ktPм.1F͹72ˌE*f4E;14PaWoqη딛 eklJgb’蹋hIQUucȹ_{m.W>n|7"?Mȹ_{m.W>n|7"?Mȹ_{m.W>n|7"?Mȹ_{m.Wh:pa8}rm- -+Zײ6gC]֣cTUթv 5xm.;$OQNkVG%߻U~Fx׭Y_ BNS%EQu{YQPU>&?G==V^8{D2,Crc#?7 LpwʾExfsl5]ͤzI KkI׶ZP.~H..8Qn/Ngܶ͝X+#jhOPiV3dS-u{usKo+6īScw#FZ6N:뮺≉]!ٜ# vm\јgTW9hW 1hޕեrhtq'[su>VѻIiZVM5DjO"#4:' orCp\}6+opt7 E~ orCp\}6+opt7 E~ Ac<'f-#k{JzOM>G96W9UtUP5@!Z O7B˛=mwn\ώCvIeʚƎdI)K\j=DW&PR[h2tT(cDD[a["}-]wmȱU~~=,1(婎zO]XX$DF6tY=ga[w`b6˃(,vF+⡁6G"k?˯j^-;+{'1:-zŨj.),yT+d,-H obNeklmq9bn+W2]`xqvwj텴T7*I K%D7b#r#T(=c6snʬAQW+[UX[UҾEIU?+[3d;<“϶X3lhUGNZWLdVh9׆>滯~kuʲ\C^zy*'ctD:SEOqvS]cL2M:[vDUQtFO ݢ+F;;ۼv?̧ah Ih|лDɫ]TS >m?>ocXNGaSj.~(#wWnc ݷT:EI#Z%7IK=*F'C]<6g5ۻ\_c/J=Yt5OI}M]{QQ@&lG{3 +u&uU0,*>Iȥs!di:$OO`@T_͹Bv.Yz2 <"ơ}:ztI~r{Pw͝۞dvmVhjGQvq{-v:f$] 髞vۭ]kQNɪd&sAH]i"I)먤rjdUuƈ/J>5~V78aр]q9n̫vUTG5\*"UK{ü;1r{v;5Qu$-Y),nj8NzWx@zqai]3<%X>{La?5{ƢUA]It[WAq:*VK GsU=$O9ZڮrWDO"& mKx}kWOUtim1--tpu5CQcztWUob& oY)bu,VIRJ)(-Dʚ&ԩQݬ|j˥$wgczzjץIZӯhm-6Ouݻ_q]жم~:8AzB>Jj_C{Y~߾盟TMe^0T]]4]VSiG?v'ļg zkyZ}m|wMU],b-j#{4k~[S q#j5co5jh" (1D/7ۓk:ATwFYbY"uj-nsky3\}w2zJުQ nƧB YU% dV2;KNQk5u=l,%]SUcȠ W챀5m_;c?ʬ7̳Ttv:]yTȨlTP>gy|:"yװD?wy4SZ/NqjTϫ=j95٭Ky~[eyQr6kMya2 뒚'+WYh#^ ^1|O|q27mIJT=DW"rzZ,9NEn1-=c˽VBTQ5F1| 6rgx8e{;EU΢fڡNeNJ*ˤ"@CEx~yK2tW6t`+F}:,5r"zK۟>=T5=ڭkzXZ_j""9ꈚ" _w`"\>g tvvd ⇸c8qY']dW_E&QQH:x~' &ca[Rܓ]IY--lmnw$䨭zCek!Wt9^M&^ &56SeOW[ᨷMЯsֺG+1rI於X~=E4nۻxlW #n]Ί)񧾦cs,r|oVGiEy%jF's[]SKnll1K6<mt0*Q{P@_yBiq.&Ie1\<ޣ7Ʀ}:*z uTGWj;Tw͝ndmVwR͌vqq([MTi;cuCEӪ鮚zm/30Mܴji2Jx$ʯmR7SQȝ.Ds:""(mN9x%6lUF\>I*WU@,`?[W;{Yh#7!kh/Uj_US__S#bb.|I#Ʊ*ڠnm?s|r(6dSdnE5HUAFRwϓ揮e[ t8w9Gٷ3n }eeS_oi5V""v" }L;u9Y;ukTˍU_ύ7ʚ/P>&wfikxecճFľXlx}7IKp#:6:jD<&v뷼@)$̂JGLt4+WȓCBYbwR6k|3? \8ke/dK%cWsF*"S*  b6|OG3:ɶmGX{)^2(j)ڎl#}xI+"Zs?WK/uI*RG#;ڦH֢TnQ-lhbd۝ώn}sf$!IrޠY4qo2˷k^J짍F9t}捗JQ$,jjliȪfAx% gF’y#2^;W+tu7dw߁>#{ :<Zrw}ltQ"C~b'C#^lɿ[5-gSn⤂UMJzN" MN];4GoFڙF,TGoM{*UETjBJzͫZI㪦^cԢk:<0g[ -sYީ CUC:5}qёVQ@xmu>|E$|[,۫е=$- Ek[-L jyb@9|_IzkM IaV41r3էWf#&o״rGe7!؞AZ$mT6'q$A1bUG^Hq/U;zJeRM2he>F6Xbd/vWij"c!ƎRfXsoy֗Y]q.[i]rDJT$qUWF-9]rj{ODG`XrR>SVCT:gpc4V5uG~oH   me~f ~77l0+MµMzŮR5m#M+fR=4EѲ"/uND}|Jf(*UUnʪIlw~cU8E%=5UjtȨ< [^qv&aHnw2H1 [0ƈ֧c骨Y/`6di-iUkE%N}iJzj,FN> gfr6isn(pev}V}/OFRSIS C?:EP> gf#m <&;{fḼ2AbE_qwi9u{˧{UM m-MKJz Cj5ZjT]@%Tu7 -+ʥr'E}W@vhܢ2ͽŲ \u&Cͭ%mzw+M]ySEZ:,q>#s$jEMQ| %/?g}j{dyKn.ժh. 8Ϻgu6Eb+o8M >ISS#whsjɋkf 7}І8:~::2IG+asG*"i\pOC?6OoO{qYy.=V+꺾1jJ֋& \pOC?6O}u&ECO2+{_\>%#dl.UTI]Muװwp6k|3?Pkock/ֻ0Sy߻;վcmX;YuOnSȝٯN:?57]) i? j_C{Y~߾\6SZ)<ӆ[6=v{WsL鞎j ;t@xoTla{lncRj?|P=T?57]) i? Czo5@/ KmF3\m[QWl-51i9z5O #}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>#}>kv7ݷswY fFeT\`mQԯvSG' n;޹'[x~qkxgܿ u9JXO}rA#Q󢶶WU;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@;_x@~lO^s7_ŬuO}z]Zz Ā i? Czo̿ אO;Y; ۜ_p೾I-0֊+)_25%t T^j9[&@1 # 31aR6HW6~$.;myo]L86+%ujٖz{C-,I"OzD "'0_aϷgl,G! %ZYnwrx8"멩$lU[ "S׸%RrEYvݵL\l.;K|%6Fbzcv dRx,yK"mCIY薱d]&mK=^ 3|髑i${^ЎN*5@?aEqܣY6?s+EWClFۦ{@?ݫM w M*mt d-+f:I.4sl9'!x\NNnnf-GcV(jk%kQ<&D>09 iws[ՇJ%"GfEE|NZٚ/bEr meAq7}4U,Nǵ%b=O:k?h)b9 9_Gn՞r],ZVMWh{U̪Ɍˊ/̗|qz-{{e5Tz˅h#r"wn ?M5=ede1:Fz$}ע#QFZWVm%"Udsz(k_YdjGKՑG[m v7;d9?w`VHyd6Vd5 ьT]VDde N  C *AC01UN002Rh2ѱlJlA8^ Fh2ѱlJlA8^,Photoshop 3.08BIM,,Vhttp://ns.adobe.com/xap/1.0/ image/jpeg Print 2019-08-29T12:12:10+05:30 2019-08-29T06:42:10Z 2019-08-29T12:12:10+05:30 Adobe Illustrator CS6 (Windows) 256 236 JPEG /9j/4AAQSkZJRgABAgEBLAEsAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABABLAAAAAEA AQEsAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgA7AEAAwER AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE 1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp 0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo +DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FXYq7FXYq7FXYq7 FXYq7FXYq7FXYq7FXYqw/wDMfztdeXbfTNO0qKO48yeYLpbDR4Za+krGnqXEtCCY4VILAbmo+YVS vzXc+dvJOgt5mOtTeY7fT+Mms6Zc29pAHtywWR7RreKJ42jB5UleQFR49VWeabqFpqWnWuo2b+ra XsMdxbSD9qOVQ6N9KtiqIxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Ku xV2KuxV2KuxV2KuxV5F+aUUll+b35b63ciulLPc2LSN9iO4uE4xcidgXLfD/AKuKsk/M/wA0eXR+ XfnKFNRtpri2065tLm3imjeSKe5iaCKORFbkjNI4ABxVH/lXpOoaR+XPl7TtRUpe29lEJ4m+0jMO Xpt7oG4n5YqyrFXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXY q7FXYq7FUo82N5ZTy/dt5mSCTRQoF0lynqxmrAKOFGLMWIChRXlSm+KvHNS8rWVzeWPmH8srebVd W8u3TfWPKOuSXCRQpeKzGWODUWjaFmlCyghgCRUbrTFXtHluPXU0KyGvyxzayYw9+0ICxCVyWZIw P2UrxU9SBU74qmWKuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2K uxV2KuxV2KpH5x8uza9pC21tcLa31rcQX1hPInqxrcWsglj9SOq8kJWjAEHw3xVIvy3h1XWHl88a vJALzV7WG0trO1Rljht7aSRviZyWkd5JGNT0Gw74qznFXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXY q7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FWKflV/wCS+0X/AIwt/wAnXxKsrxV2KuxV 2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxVin5Vf+ S+0X/jC3/J18SqfaxrFnpFmt5eFhC09tbAoOR53dwltHt4epKtfbFUbirsVdirsVdirsVdirsVdi rsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVYj+V5lH5c6QYVV5RA5jR2KK W9R6BmAcgV70PyxVj/5g6l+YT+XI1u9A02GH9JaSQ8eqzStzGqWxjXibCPZnCqxr8INaGlCqzDSb /wA7zXqx6tothZWRB53FvqMt1ICB8IETWduDU/5eKp9irsVdirsVdirsVdirsVdirsVdirsVdirs VdirsVdirsVdirsVdirsVdirsVee+Xfz4/L3zHdWtjos93eandMqiwjtJ/UjBO7yOV9FUXqzepti rO7+/stPsp76+mS2s7ZGluJ5CFREUVZmJ7AYqx6389/W7BdTsdA1W70p19SG+jjt1EkXX1Eglnju mUjcfuqnsDiqc6Dr+ka/pcOq6Rcrd2NwD6cyVG6mjKysAyspFCpFRiqW+cPPvlvyjDavrEzrLfOY rG2ijeSSaRaVVeI4inIbswGKsa/K6w/MGxIt72OC38nJGTplvd+m2qAOxdObWrNb8Pi8S3yxVmfm PQ49b01bF5TCq3Vnd81HI1sruK6C0NPtGHj9OKpnirsVdirsVdirsVdirsVdirsVdirsVdirsVdi rsVdirsVdirsVdirsVdirsVaZlVSzEKqipJ2AAxV5L+nfOH5cfl7oWqau2m3ui6fDp9jqNrZwzfW I4OCW4nS79Z45iDxPEQqDWgbapVTH/nImw1i/wDyn1aPSleV0MM1zHFXk1vHIGk2HUCnI+wxVnei 6hpl5odlf2Dp+jZreOW3ZSOAiKArv4BcVeb/APOPsV29j5r1JEaPQtU127utDVieJgZyOcf+SdhX vTFWVfmTeeZoNGRND8uweYhMxF5DcFGWKMU+P6u5T1+p+EODirDfyt0nyzZeZmaPX7i11tomLeUV t5NHtFU8uTLp0xdn470dXI2xVlrfmRbf42sPLSWTvDqE13a29+JBUzWEQluD6PGvpIT6fPl9sEca fFirWk/mp5ZmW/TXrm28t3dlfXFiLXUru3ieUW5X98nJlqrBx0r8zirKNL1fSdWtBeaVewahaElR cWsqTRkjqOcZZajFUXirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVQes6 VZ6vpF9pN6C1nqFvLa3AU8WMcyFHoexo2xxVgk/5RXN/5as/J+p6vE3lGyaLjYWdo9vczRwPzSOe 5e5nDAkVYpGhJ3BGKsk88+XNf13Sre10HXn8uXkFwszXscC3PKMRyRmIxs8YoTIGrXtirELP8m9d g8g6v5VfzSJJdUvY7z68unRRpGEMTPF9VWX02WQw/EKgGpqDU1VZF+XvkzzN5aW8TWvMzeYY5kgi sozaJZpbJB6lVRY3dSH9QdhTjiqH/NiK1k0a2W482zeVAZSqNATyumIH7nhGY7h+n2YnDYqxz8p7 fUIdaenky3t7Fo6/4v8ATltLmY8aKDBfmW9YPTqZKYVTvXNF8xWv5qQebLbSpNZsF0VtMtYYJreJ oLprn1WkkFw8VEeOi84+TdRwOBWP+f8ASNS0ay8iRJ6N7rU3mmO8uS7tDDLd3K3Erj1AkrpGrNwU 8CQoG2Kpz+V4a683ee9VuuNpqk1/bWt7pELmWGH6rbhY5llKx+oZ1epPBaUoR3xV6PirsVdirsVd irsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdiqX635e0PXbP6nrFjDf24 PJUnQNxbsyE7ow/mUg4qkv5WySyfl/orSyvNJ6JBkldpHIWRgKu5ZjsO5xVWb8y/y5Rij+atHVlN GU39qCCOoI9TFUuvYPyv8+6hbRjV4NXvtO/0m2g03VpVaIqePriOzuEoy+px9SlRWld8VTmPyZoE XmOXzDBC8Oo3BR7n05HWKWSON4UkkiB4M6xystafiBRVPMVdirsVdirsVdirsVdirsVdirsVdirs VdirsVdirsVdirsVdirsVdirsVYlP+ZeixeddN8o/VL8ahqb3KRXMtrLb23+hxPJKVknWP1R8FA0 QZTUHlirLcVYD+Zn5oJ5M1byzZekkser3oj1GRgx+r2dVjaX4SOJ9SVaFtiAwpXoqz7FWO+a/P3l 3ypdadHr0rWVpqbPFDqDitukqAERysDVOYJKkjjsakYqxH8qvzC8syaZ5f8AKVncfXtae3lluYre jpbRIzNzneoVa1VQoq1SNqb4VeoYFdirsVdiqHv0v5LOVNPmit7xhSGeeJp41NerRLJAzf8ABjFW DflB5i8x6yPNkeu3q31xpOv3emwypEsCCK2WNBxjBbiCatQsTv1xVL/+cijeWP5c3uu6bqF9p2p2 DwLbzWV5cWylZrhI3DxxOiP8LbFlqO2Khb5q8rWMthPoeg63rlt5wfSp9T07hrGpScjb8EUSCa4k jAkllVfs+NOmKvUY2Z40dlKMwBKNSqkjoaVG2KrsVdirsVdirsVdirsVdirsVdirsVdirsVdirsV dirsVeYeef8AyeP5Zf6mtf8AUFir0/FXiXnzTdS85W3nmODy/famkyJpWi30DWIijfS2aR9prmGb e9aRHKRtVVHX7IVegflR5r/xT+Xuiaw787mS3WK9NeR+sQfupS1dxyZOW/Y4qh/zk8mDzf8Al5qu lxpzvo0+t6dTr9YgqyqP9cVT/ZYq84/5xL8mfUfLl/5ruEpPq0n1azJG4t7diHIP+XLUH/UxSXvm KHYq7FXYqo3t9ZWFpLeX1xHa2kC85rid1jjRR+0zsQqj54q8i/InzT5an1fzrYxapaveal5m1G80 +2EyepcW8gDrLCleUi8UY1XoBilEf85OaxpVv+VuoabPeQx6hevbGzs2dRNKI7mNnKJXkQoG5pQY qGQ+SPLH5dyarB5t8nmwVVsZNMul0pYBA7SPBcfvfR6Sp6Y2O9G37YoZ1irsVdirsVdirsVdirHZ /wAx/wAvIJpIJ/NGkRTRMUlie/tlZWU0ZWUyVBB6jFU20rW9G1i2+taTf22o2tSvr2kqTx8h1HKM sK4qjMVdirsVdirsVYn5g806tJrX+GPK0Mc+tCNZtQvrgMbTT4XrwaUKQZJZKfu4gwr9okL1VUl/ Lk3Sc9b8x6zqN01TI0N7Lp8IJ/kgsjAoA7cuR98VWz+T/M2kIbnyv5guppU3Ol63K19bTdPh9d63 UR8GDsPFTiqceVfNEGvWk3KB7HU7GT6vqumSkGW3nAB4kjZ0YHkjrsy7+2KpJrP5Xpq3mez8yT+Z dXi1LTGnOl+l+jxHbLcVEiIjWbcl4njWTk1OpOKsq1DT7i70x7KLULiymdVX9IW4g+sLQgll9WKW KrAUP7vvtQ0oqlPlfyYvlzy9LolnrF/PExla3u7k2sk8DTEszRkQKjHmxf8AeI+/ttiqB8g/lrZe SRcxabq+o3VldSPPJY3jWrxCeQrylT0reKRT8NKBuP8Ak1xVmGKsR/KWKOL8u9FSNQiCJ6KooN5X J/HEqy7FXYq7FXYq7FUl8y65caVJo6wxo41HUYbGXnX4UkSRiy0I+L933xV2p65cWnmfRNJSNGh1 NLx5pGryU2yIy8aGm/PeuKp1irsVdirsVdirsVY/c/mJ+X9rcS21z5n0mC5gdo54JL62R0dDxZHV nBVlIoQcVTXStY0jV7QXmk31vqFoWKi5tZUmjLL1HOMstRirzm3jjX/nJe5ZVAZ/KQZiAAS319Fq fegAxVBaGD/0MbrTaDT9F/oiIeYzDT0frvP9zy47erwp7/a98VZBq/5j61ZnVtUt9Fjn8raDcNba nfNc8Ls+jQXEsFsI2VkhrvykUtQ8RiqZ/wDK1fy+/wCr1D/wMv8AzRjSu/5Wr+X3/V6h/wCBl/5o xpXf8rV/L7/q9Q/8DL/zRjStN+a/5eqpY6zFQCposvb/AGGNKlv5d6roem+UrLVtY1C1stT8z11u 6NzPFG7m8pIgHIrVY4ika+AXFUV5y8/WNr5du7zy3rWk3Gr2i+vDZzXMLJcKm7w/DIrBnWvAg/ap 2xVhXkv/AJym8i6z6dtr0cmgXzUUvJ++tSx8JUHJf9mgA8cU0yTX/MHl/RvOHl/zZDfQ/ojXobjT NQvIWEkMvpRm5tJOUfLkUMcqA7/bxQnX/K1fy+/6vUP/AAMv/NGNK7/lav5ff9XqH/gZf+aMaV3/ ACtX8vv+r1D/AMDL/wA0Y0rv+Vq/l9/1eof+Bl/5oxpXf8rV/L7/AKvUP/Ay/wDNGNKxr8t/zI8k WPkjSbW61aKK4iiYSRlZCQTIx7KfHCrJf+Vq/l9/1eof+Bl/5owUqn/yt38uPrH1f9Nxetw9Tjwl +zWla8KdcVVP+Vq/l9/1eof+Bl/5oxpXf8rV/L7/AKvUP/Ay/wDNGNK7/lav5ff9XqH/AIGX/mjG lSLzJ548qa3qflez0vUY7q6Gt28npKHB4rFMCfiUDvhVH+eNb0rRvOvlO91O4W1tRHqSmVgSKtHC APhBOKo7/lav5ff9XqH/AIGX/mjBSu/5Wr+X3/V6h/4GX/mjGld/ytX8vv8Aq9Q/8DL/AM0Y0rv+ Vq/l9/1eof8AgZf+aMaVQvfzf/Ly0s57ptXjkW3jeUoiSFmCKWotVG5ptirWi+dfMEmq6Taa/o0O mweYI5H0mSC6NzIrxReuYblDFCEcxKzVRmGxGKsT1zV9A0X/AJyOt73V721023fyrxFzdyxwIZTf OAOchUFii+NaDFLXk5E1H88dY13ymVbyi2mpb6reW9PqVzqCsCvpMo9OV0QirLWm+++6hCanbaTr H57Pf6z5ZvdS8vDRhpkVzeaLdz2wvluw4YCSBgFCFh6tOO/Wm+KXsGmaRpOk2otNLsoLC0B5C3tY khjBNBXhGFWu2KEh1D8tfLN9qNxdzfWlhvJUuL/TY7mVLK5mSlHmtweDE8F5dmp8VcVZTirsVdiq 2WNJY3ikFUdSrDpUEUPTFWD/AJb2mmXXliDQtUtYLjVfKxOjXSTxo7qtt8NvIOQrwmg4SKe9cVR/ nHyWuo+XbvT9AtdP0/UbtfRW/lt0PoI+0kiKq1MgX7O433rtirEPJf8AzjP+XXl/059QifX79N/V vaCAH/Jt1+Cn+uWxW2S3i299+YuhaTYRolr5Yt59RvBGAscUl1E1pawgLsGaOSZ+PgAe4xVmuKux V2KuxV2KsU/Kr/yX2i/8YW/5OviVZXirsVdirTuqIzt9lQSfkN8VQmjaraaxo9jq1ny+qajbxXdv zHFvTnQSJyG9DxbfFUg8/f3/AJW/7btt/wAmpsVd5g/8mD5S/wCMOp/8mocVZXirsVdirsVU7i3g ubeW3nQSwTI0csbCqsjCjKR4EHFWO6D+XmgaLfQXsEl3cy2UTQacl5dS3EdrE9AyQJIxC1UBa9aC lcVYLqGr3MH5+xa0miazcaTHov6FkvYdMuzELr660hPNo1DRBT/eLVfAkb4q1azap5H/ADY82zvp 1wfLuvWcV7o1vZxs8U+oQRxxvAioCsc8zl+tK9ScVew4q7FXYq7FXYq7FXYqxjzF5Uv5NTXzD5bu Y9P8xIghn9ZS1rewKarDdKvxfCT8Ei/ElT1G2KoaHzzrdsPS1vynqdtcrsXsVj1C2fbrHJCwkp/r xriqy48xeedZBtvL2hSaQjijaxrfBFjBH2orOJ3lkYdhIYxXxxVOvKvlay8u2ElvDLJdXdzK1zqO o3BDT3Nw9OUkhAA6ABVAoqgAYqnOKuxV2KuxV2KsU/Kr/wAl9ov/ABhb/k6+JVleKuxV2KsY1fUf P8b3cdnoOnT2ShxDcS6pNFIyU2ZohYyBT7cz88VY/wDlvqPn8eRvK0cOhaa9gNMsFjuX1SZJDD9X jAkaIWLgNx348z4V74qzTW9Ci1Z9NaSVov0bex3yBQDzaJXUKa9j6mKuvtCiu9d0vV2lZZNLW5SO IAcX+sqimp/yeGKqmsTa9FCh0aztb2YtSRLy6ktFC06q0dvdljXtxHzxVKfr/wCZP/Vi0b/uMXX/ AHjMVT6xe+e0ia+iiguyv76GCRpo1bwWRo4WYe5QYqr4q7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7 FUv1XzDo2kz6fb6jdLbzarcCz09GBJlnZSwQcQabL1O1aDqRiqYYq7FXYq7FXYq7FWKflV/5L7Rf +MLf8nXxKsrxV2KuxVbKgkjeMmgdSpPzFMVQHlvRk0Ty9peipKZ00y0gs1mYcS4t4ljDECtK8a4q x5vzItv8bWHlpLJ3h1Ca7tbe/EgqZrCIS3B9HjX0kJ9Pny+2CONPixVH+WvOcOrWGrXl/atoyaPf 3Fhc/W5I+NLfifV5g8ArBx3+k9cVTHS/M3lvVwp0rVbPUA/Pj9VuIpq+nx509Nm+zzWvhUeOKpli rsVdirsVdirsVdirsVdirsVdirsVdirsVeH+efKMulfl95o17zg9tP5r+uSzeXdasDN9dT1HUWMK SHjIhDtx9OL4Qm+5qcVet+U31h/K2jvrQK6w1lbnUVYAEXJiUyggbV51rTFXkn55abqevNq2r6bI 6y/l5Fa3lmFrxN7I63VyTxP+6bRInFf5u3XFXsHl3W7XXdB0/WbQj6vqNvFcxgHlxEqBuJO261of fFUwxV2KuxV2KuxVin5Vf+S+0X/jC3/J18SqJ8s395c+YfN1vPM0kNlqUEVojbiNH0yzlZV9jJIz fM4qyLFXYq7FXYq8/wBc0XzFa/mpB5sttKk1mwXRW0y1hgmt4mgumufVaSQXDxUR46Lzj5N1HA4q keu6LPZeavy80XWHS507Ub/VL/Wia/V59UMRubZW5U+FJHb0VbrxUU2xVnt1pWiHzzp2qMRHrf6P vIYwq7y2wlti5dv+KnK8f9Y4qn+KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV4/q17+a1x5wk1Wb 8vG1Wy06Qjy9FLq9jBHDtQ3LRVl5Tv2Yn4F+Fd+TMq9E0+58x2Pk6xn1G0l1XzFFZ2/1+1tmto3l uyiibizvBAAHLN9oCnSuwxVh3ljyPp9/oWpaj5y8jwS+ZLm4u7m5S4TT7qef1nZ4o7ecSMFCRlYk 5yJQitf2sVb/ACM07zr5f8tDyx5j0a4s4bCSZtNvpJ7OZDbvJzSJxBNJIJAXb9njT9obDFXpmKux V2KuxVD6hqWnabaPeajdQ2VpEKyXFxIsUaj/ACnchRiryXyvpflW71HSvLWrw6D5x0s291+g9ctk hnkjFu6ySW86l5x0mqGRqbbqMKpt5a/LHyDL5h82x3HlnTngt9RgSyV7SIqkZ0y0dljqtAvqO5NO 5OBXomnabp+mWUVjp1tFZ2UA4w20CCONATWiqoAG5xVEYq7FXYq7FUDrOh6TrVi1jqlsl1allcI9 QVdDVHRlIZHU7hlIIxVS0jy5pWku8lqszzyKEe5u7i4vJyiklU9a5kmk4AknjypUk4qmeKuxV2Ku xV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV55c+efM+r615n0zyp9RjuPKnprc22owXEj3UksZ kHCSOSFIVPBlU0kJIrQClVU78leZrLz75EstaEU1nDqkTrNDHNJFLG8btFIqTwmKQUdDxdSDTwxV g35J6fcajL5ul1PV9Wv203W77SrIXGp3rqltGoUDiJQpej/bI5A0KkHFW/y8sLg/m/510+fVtWut P0A2J0uzudSvZok+tQl5OaySt6u/2fU5ffviqdfnlFy8s2chsZLj0L1JVvopWjNkwRgJykZV5NiU 4jxqcIVgf5QI035l22otbur3VhfU1uR5a6gkbWv7oW0gHoegXDctuVcVevP5/wBBTzVbeWyJjd3c ktvBchAbdri3hFxLCH5ciyRMCxC8Qfh5ctsCozyx5q0zzHb3s1gsyDT7ybT7lLiMxOJ7cjn8Lb0+ IEYqnGKuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV5z+ZHnbR2nm 8lQ69YaNfXsNNW1K7uYoDZ2soKn0g7oXuJF2QD7A+NqfCGVZB+W48sJ5NsYPKyldCtHuLSzcsjiX 6tcyQyTB0LK4mkRpA37QNaDpirzf8mfLuj61ceeJ57q9V18zX4UWOpX1mhjYqVYx2k8KNXf4iKnx 2xSjvyqtrKx/OL8ybK2mkljj/RgQz3Et1MeMDc+Us7yyvxZqfExp0xQmX5+WH1jy3p9xHp91eXVn eCSC5t1EsVqWjZWmuYTBeGSOhpQQtv3XFWF/k/Zzx/mZDezW0sVze2N+ZtYeJreHUo0ktQBb27Wl h6PosfiPDfpVuxVmmt2T6X+cFlrlxpV1Nolto066adPs5blf0pdXRa4LC3VvSkki6vJRDXduuBWP 6/5K03/GvkBtf0uzudS1q/1a41eOWKKZWEkDzxWzsykSJb8gq12qOXU4q9oivLWW4nto5Vee24+v GDunMcl5fMb4qrYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYqkN75A 8h393LeX3lvS7q7nbnNcT2VvJI7H9pnZCzH54qmCaFoiaT+h00+2XSChiOnCGMW3psasnogcOJru KYql9n5A8iWUrTWXlzS7aVkeJpIbK3jYxyKUdCVQHiykhh3GKt2HkLyLp15Fe6f5c0uzvITyhube yt4pUJFKq6IGGx7HFUL598h2XnGwtbS6u5bX6nN9YiCLFNC7BStJ7e4SWGVRWoDLsemKsB/LHy5o tl5/bUfLE0up6a9ldRapqBtIrOwimaSAwx2CwxQRVIib1eAauxLVxV7LirF/M/kOLX9c0vWW1m/0 660b1Dp6WYszGkkyskkhFxbXBZmRuNCeO2wBqcVR/lvyymifX5G1C61S71K4FzdXl6YfUJWJIVRR bxQRqirGKAJ1JxVOcVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdir sVdirsVdirAvIUHmKX8u9AGi31nZMIpPXN5aS3gYeo3HiI7m0403rUmvtiVTj6h+ZP8A1fdG/wC4 Pdf95PFWQWq3S20S3ciS3QRRPLEhijZwPiZI2eUopPRS7U8TiqrirsVdirsVdirsVdirsVdirsVd irsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirFPyq/8l9ov/GFv+Tr4lWV4q7FXYq7 FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYqxT8qv8A yX2i/wDGFv8Ak6+JVleKuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Ku xV2KuxV2KuxV2KuxVi/5ka1qGj+WGu7K5FhzubaC51NkEos7eaZY5bko3wn01b9rYdTsMVSP8sJ4 7LVdS8s6Vq58weXNMtraW01EmFzBPO0pktTNbrHHJ8KrJ0qvKh7Yq9ExV2KuxV2KuxV2KuxV2Kux V2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KsI8+eZb228y+WPKdrdrpv8A iR7sT6iUjkdY7WIMYoVmV4vUlaRVBdWA/lJIxVR8vW/m7RfP0egT3aXnlZ9Lub22n+rQW8xuhc28 fCY26RRHgjEqURa8jyBouKs9xV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV 2KuxV2KuxV2KuxV2KuxV2KsG/MTQvJvm3UdN8m+Y7YvJfQXN9p92jiOWOS1aJXWI0PxMk/IjcUXc eCqQeSNC1byJ+YsXlGDWbvWfLup6bNfQQX7iWezltpY46hwAPTcSU2UAn5bqvWMVdirsVdirsVdi rsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirCvPv/KsP0lp/wDj D0f0j9XuP0V6nrerx9SD1fq3pb+ty9Pj6f7ylePw88VX+SP8A/pO/wD0F9Y/TXpxfX/0p9f/AEh6 G/pV/Sf+k+j/AC0+CuKsyxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV//2Q== xmp.iid:41965C2028CAE9119D71CB94FEFC4CE8 xmp.did:41965C2028CAE9119D71CB94FEFC4CE8 uuid:5D20892493BFDB11914A8590D31508C8 proof:pdf xmp.iid:7300D044D2BDE511B794A114768A17D2 xmp.did:7300D044D2BDE511B794A114768A17D2 uuid:5D20892493BFDB11914A8590D31508C8 proof:pdf saved xmp.iid:1E77C1EE7B78E5119EA3C9244B81188C 2015-10-22T10:47:13+05:30 Adobe Illustrator CS6 (Windows) / converted from application/postscript to application/vnd.adobe.illustrator converted from application/postscript to application/vnd.adobe.illustrator converted from application/postscript to application/vnd.adobe.illustrator converted from application/postscript to application/vnd.adobe.illustrator converted from application/postscript to application/vnd.adobe.illustrator converted from application/postscript to application/vnd.adobe.illustrator converted from application/postscript to application/vnd.adobe.illustrator converted from application/postscript to application/vnd.adobe.illustrator converted from application/postscript to application/vnd.adobe.illustrator saved xmp.iid:7300D044D2BDE511B794A114768A17D2 2016-01-18T16:27:29+05:30 Adobe Illustrator CS6 (Windows) / converted from application/postscript to application/vnd.adobe.illustrator converted from application/postscript to application/vnd.adobe.illustrator converted from application/postscript to application/vnd.adobe.illustrator saved xmp.iid:41965C2028CAE9119D71CB94FEFC4CE8 2019-08-29T12:12:10+05:30 Adobe Illustrator CS6 (Windows) / Print Adobe PDF library 10.01 AdobedC s   ! 1"AVwQ2#89aB3Rն7WYqc$t%vs4D5X&'?40nK9h;1ǰ?QPbܳ*VF@υ '[W~uJ);JPz/%_7 g3#3sR'*ʴk+# R3Ϝ/k;ݓl׉ ո9]vivoK]w"϶^k ^Wr+Hfyye_JWagguM7?0pQ R0T#*J4)Ka /?Z nqvWʆOJ|,[=?/2/꼠/Xyqn_3_c ZȻ?E }}ޟK=ަf^ŷ) +u>Cfk~[(@VwN9 xӹgfnx7w)\F4lNv~V.%X&irw~B0Z. ]mwo]O\:gb;N#k>eLxVWm ʖ}ԤeRu MM\_eǶssʥʱg&vkrc(>R)CQxvc03>Ak+]el7,FPKmڳnI vRR@`2]1{.#(וnq13x=˴o'/W9ʱ>n}*zz Q>IM;W.1YǶSoMr7vx!^ZFne_H~NN>{KI.'l?|nj6,ߵ?weZNui+qb /V1g V4[Iz|POXU?OLu\;pOXU?OLu\;p4sU>^[yÊr>6zAȹ+ 7+jQ[_JiZ`&jnj?A ~s_?|MY8?/W'ٷut8$ʍ5܅/.ٟ,'*%@b;N3ݑҸ%m6Ovݸbm/˱e_eV>WJWҀU >y ctah<ξcKų\M.lrc9ab>=7ս]'Wic/Y\޷rq߶*|@c~oՋrmqM?z'ZXX%lZcOm֔_zA؜k}m'`җo^KĕerRlFT Nt_JI.oOky >`ln7<|a_:Y͖%fqvp )_vQ~]|Y6^Fxrr 8W̬k{Scgu\kGtzF䀩qop흽M+J]ȅ' 2%SQ)X֕iJ3|ekKg^Q .Vlqu#;g;&e_"Q#k*2_XW <-O+e~ Y>\;_"]ȳ鏏 }Yv.NY}_ݽ1zW2ǵJ~ObhB#w>Nz 0K'G,-rjDfίu)VlFw.KH5+Pyzl{7ϑh87!hcn^7[{̌}*!5JnFaq\uO.F֑}j暽nr.ͼ>MwsnN=Kf\3-Zl}p-OrZl?%O:#o6P͕1b^ҕ\GʑƠ??M/^C5{^=cN&)Y=F_.4[c/O|'+*SEm#ۼI־~yȵoִٿfRJ֕@FngMwu5{_n񶽥ʙM_tqqrcŸ6Uzu)nZU@-æwHvmg*̵XN~jѹ >->*Dݣ:nO 7ouB8{fz23\IkX~zmF=2>uڷ?me=)Y ==[.iผ] VG̬Ln0c(^Ϸ[ԝiڌ YI}T;Sno\l3mϻ|ʱdlG!_@;}{#*xUlNa̅=/_|Ҟ`ưk+v^Ϩȼ3? e⾂/~^ǵzw._ۯ]{I▷ĎYNAg9] beRvnصjPΒi𯯠}n+¿j21rv .ۭ=\ɗ)}iAN1-ghrk=s2=Ŭ20nC_ȗG}sџX,'ŵ^jpnNr\NU_R)㮼Y}͏5z iY=VWu2"0[=k*֔}I@O/6|܂}[/[$6Z\byeaYiO_Ou/.Q_rp5S;`ZqR¾VZ~0}Ozx/drgCmnDi;3x|=%ME^uf~\WOy]˱,KX|B_}+XҒ}}'J R< Oz3.%r6re+SDZޥʔm~)_m)|y\_AGc2\ka5L_`tƷ=Էvt);d_<64Kkzw+;9o;LJ*=Jʳ?grz@=gѝ;XQ޴߳w'WjU|)~]c[PX89\i=W9 {Z?dع8'~:6qǵ ,B6XFi4)JSҔߝ׺Gwθzc䙻<[W1yM6rn\Rیi9R=^z~_'zr5WV/lqe9cfcVzmGVV>˕O'1멼rJV,G`t&߻~;>.YOOE?9ǝ~rAo^!>Cӿ'-x얳WWK4knܥΨvzF76 mf%nڱo߹VXrֲ)O@|sn6 yjv< vkzk:ҵZWҾ>M_ai ƫC=Nfwc_ær6[O1r=eZSje=IϵI[.z}Xo\i1g(֠;&m귚Jz5g"nۭc_+Xʞ@2_YqzM7|z0m& Kz,ۭ}+IJewj&[ȴڞAˆ~{g[elqf(J+۝sonu_*O;|%*d`_FͤcΖ)BjOXU?9_nu ?.Uylpx*fʾbڤRͨRzTRzT<5r=鸏..Vt6zխ=/.v:zP.qnNF{,<F=NvkXjuuJrV>R~FOϽe?8v>4v?*>gJVw픡>)FNKA3te' V[/.z~H,G Z9}aS3u7-6pJ#ݷ^zOݍKU~.\qg"x_eesۛn34cϱ΍η'rЦEmќ>JzP~g{K;?򽶊2{n/\m#]XZOmҟ`Иpyƀ[a >k_}Uƹy]8K8/rE_ط~P%;eҴ+ZT)R1#1”W8WU}YF=s+@=+ι8W-缎<3O^;=aZRĿ1cޞGuVmqSfLKY\8R==+Kv@ټC<΢ỻAܷ38^N.f'r~W,gڱz24}t*z|+OP?I<`pepn]ܣ|{j34?wͳ+3+_>teOeJV8?\r>a՛Y?{ɳjoǽ[0ֲR%OOǎi,۷#nۥ?+\YrmBU2>XEρ[_@-icP)IxTeJJ2IFVe\k8nk"Q,]ѱ Q֔OwPǿkzqn#OYJsiHҔֵ S؟Q ##kAR/c'y~S'ZK+XgvOle CompObjdfiObjInfogEquation Native ) FMathType 6.0 Equation MathType EFEquation.DSMT49qB )T ) DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  A M 1 err_1630919697jFOle CompObjikiObjInfol FMathType 6.0 Equation MathType EFEquation.DSMT49qB )T ) DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  A MEquation Native )_1630919755hroFOle CompObjnpi 2 err FMathType 6.0 Equation MathType EFEquation.DSMT49qB )T) DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_W9'ƄH""+tn?/|i.?z~߻=nxcOm.\f׮FիQݝi1kZJRm@C/q/5>ټ[[}m96j6nd\va \ȷYzz_t:=mὣ96|k]ooV|% Z•*|򗡷θnq̜:Lv6rim32q8c"vجnJ#_P)E]i-FSg+ ְl^)[iX֟v@6{dzKe]cacw/]O;n|Jn4=^;o8[,\anujVn]OIV@OΊV^/k|oJV{>1 .N_BTa_ly_ǧx~)=(r]D1v5߹nm݇eXJ ~_[=n6xT9~K>k_giJ@|xwmv.V^q1iKK#o.Ґ{9}֞4X MMy6]u^DZ mF5Άl5'ur^5l&䘙r.bŷfXV+HX\sc8¾zSN2y:ɖVnTøv$Gw.,+ZR+ri}kX@`^9~ndco=O8fqxΘf[ƾi?=AXRe8 ]ʻ #.lqSvp?Q+Jǝ'׉]V8!<~g[^^a7O_1j>χžds&~ۭn7{"Fe:۹{q]Kvin#JJsHۗ<|ken19󴻬z>\8+J~ >9nZ+w\% TeҴ+ZTwZz7GI8p^\/NAzvu^m܌2qq܍'2%}*T{"܌p$9ʾ\JֵkZ_|g&?sS [>%hNr(DŽ-•*1Ƶ˷>3ȶ- Ma4Yyy7Yݽ~YN*RZֿ~ozxWO+qVU[vv'ũܧj+_J1(+0v) P.g$7Xs>n'MlTK&ߑoc_O+_P7 !svWks1t~u_pnx/58YV{lYlmƞ՜@n-Ɯ>_g7\xN5͖umDZ ܻrucZSȻ׼Cg{³\nmkKiZϏ>',n8$ ýj2K2q![wm\~5*Qwyo HݬYn:u,{j+vm!:J!rd+0v) ڟGnO?T~h ~_-{xb|<<^]kcg۵Ejñ{Ww*VYP~Oy}ϸoo5u{v9crjer*Fu@=?'r{cK3?v9[Mf>dXBR>Ogs@>O?sg߭&o7ϕ »Ǭߟ쳮ϦU(z@'8Fld>?/~e%52.j܄+oV!)X{})וѓ7^#tߴtZ~Ta;V2ۻn~>1}\y__Zw_3ho}.ޮ;>?n۲w!j-2uF̠va[{~y<ޕDan1u Oѝiӝ;֝_nŮǰu_+rڍs/ֿW+r [Nc8J++J?nn ߇޳ \/kOeOLu\;pOXU?OL*}A{4?|OCTevOn4|#b:Ǥ0ms!*1e*ƕ;qZ]ئӘދ#*"jJ\zS]RvaOYi{+t+XL:s .~w6ZvmV^v.XZ)ZVZz;x<0g{ί rnߦz=U>n}m:B2nSk:F->rٿtz؏џO_Oߓ( G}?R4};:}mͶ OolL:lyOE؅cG1vބ[^ۜ(_OuO9C]Ǔ-\eJ&q8P%T[tj+Lxڿ28-̀?ǎ?Ko 1jLxڿ28-̀?ǎ?Ko Ʈ9'9fƓiA ޕ˿"嵐 R~OO 3YOnpN?uON|>ml=Jl+n_!n>?ǎ?Ko 1jLxڿ28-̀}VNxeKҤ)cmRҠ>Lxڿ28-̀?ǎ?Ko 1jLxڿ28-̀?ǎ?Ko |fۑ5|>; ߮>Ƕڳ퇶+<׫84c6_jvlnʷ+ҥ~Z ]W@c~ߵimd&4o _"ͨV~RƔ# N_ᗝ\ŞivEq-j?6Y] X)m#?u ?}Q蛞?w?_qdqlvg.OȦ<)Lku=n|kZR+~rż>ᷱYïaRw듰[X<[WZViO4fE/څ+w܍% TeҴ+ZTijożl{4ڱj4#OcJR? oO}yeozZ85zܻ]?k?vnj}k'Kܛ`[Uko {OJzK"-z~J\ku!*ۍ%:RʾV)_O;9GxUͳ{Gr팳p5˺<}-J7&5B'IX>+_@z6x[7X=5l;X*S]qnNmg:UƵ@{p >|,mi1jBRz]ҕ>t> * ڟGn}"S%gV0ZYfwJp% zW*V+0v) O7f>-+YWaطH'26K)RJ{JRl{K]=&%660k06ȿbݚ9kAw;+:Oxw=vG m%ƻ`BqzRPiZVj9O>Hj,^\ŹNs4ջvQiK N*{>Nu;OOyr.[96xLiK"Ʈ"5g{)* (:%wy )w}wwZ˜kwzrm10˷%(֑gr}=hb|׉v/^ 0O8uivui_JFTgRXʔ+@dʎ_<*;.Mp>r?wY)ZlRͽX0iO9B7>ly^CGy er^9˖6+SmZµa vd0;SVUej:]:/7[fJnZIFTZtΓ|^==)n#iǵ|!+Pˮ7]oFis+ZzTS}FjMs؞.Sf.ұRQeJV@K-=_&m3̮w=~s)'nt4|`i{þ뭆/_$/\-dJX~iOP6W/j4]7gjkS̻p?🧻-SQ'>V=ZY=>}|j+ }}=)*PO0qm}}.fivrNtܪaY·rˏFT <ì8װt=Y}5Z[8xY3ط/w#/?_xް{;^Űðw/2;溻ls6# t3u7si¶Kp/g`S.9ߣpq5svLɝ[nrrne9SY/xcqnQ{s~:[=VD+n.[zxW);Q)W:[q,>\̊:ܛnƖd&7I֒ZgJP yO$p1 j7O_fy}Z+ߞ?7vL. u7RneƬƾ,<ݟf>l!*SP8fȞ?!ҽgS眎0Og'"Fl#ߖ-FXܷZl@dO9{/y־8H7;[7Ɛž]@Lu\;pYxg.[yt/KĄndK[s*mBre:}JWgcQy&5sx1fq-qk+w%OZ|h>/V97\]w˹!+xi{֣ Q=-YJ~{ǜ)W][l--i[z{Y;ݹJG𸖭JNJ<<'4>+ǒ֒m˖rMv~| Y0_oUG߿o\_l,R%5)KKu…~GP?B`&jnj?A ~3>P;x<0i]Wk/ɵȹFW\Nd#z--UF€3o :-x ǰVMs O/1m䕕p*BnVwԅdtVn &o[g$nY쭿Ҽksgdk_jfYX}d~Ny +u0֯|r#weZֿ>Z7UƵã6co-m,nmn}BܽkOTU+XV5Kg]u{"j.K\J+L{Rkz)Rq=AoSsNew(ݳ˵LeniJrȧ˳IRJSe:| _lw[lzVn>}c·.ݝ$aֵ+y#;CLsIp|7CgWYE 8\ZG[fǶ!W)T w4x7ErMbillg5]NKx68u\iz+_t~4w.?f׍yϕxϯ^Gu5WX1~6,[m}ޡks=~|#k"; 3v~t>TIS/Om~Oo7cw|}V-1x;˯~MyU9^w̸7a3gn8t,ݟ42t%/ހ>`uզ}]܋8Ss }voZsg[9x^g 1nj}|!^ςOeZǭKc |hF) ~"~ݏ5S|~.UY~k;muoqg6er),bc0V% ܥeI_wü8ο4:.t*[| gȮnprۖ޶TcU'r.N p \*Be9ʾ)kZ1tGQl{8g3yinaocoqݝ%,,w\0%Zz|o|G~lϱ:k]7~~G,I^N)nŽJ4+Z[# Njg|]wXUx`; Z;zq 7#dXٻ+KXw´%riTN: !]6 3?\;Էfn>*oc{ooq-,>lVT_`dXwƀ<xo71;ry`Wcf'rzk9ҕHi@y,xm %%~gڭʖ WQ U8n_o7Yx:cS*lڤOU[g:R}(nR.黗7x<{y,{vP\Uinɻ(ZlV3r^8F5KӪjr:Í}29m֔? λ\lLJq+J|%인ߖh:W͜^wӿ V{iTΕ.kd8ƴ˝aI]7 eYkncgdۍ7ݍarsc85%ҴT5v5ux~-ٱbŘZ R0#JF1=)O|9uge))q=u< #n4g[a4M\+fˀOIu.wlkz?2w^Xۅm}x?H Ӷcwg5>eyԽjߥ+L{r4P+Y~d۷w$#vnFo'Hʔ)(kJ5天JҿۧzK='vIXҵkJVUjwyn|qu$#*R(ҿ+J( #Sn. [.ϴpRM%cJ)YWҟ dLz[{u?PcG\ݳ:-6~q +wvLzc?ʖX$OOO^ ]skr|˷ UZ{)ONuo6~ROoJ.W SGLĕN+XF2H#;_4Jsmvx]L[ƿ_{+~%,YrEFj팀]V۰{ӶseԚwO^p5흛Z+czZJJQm(0ovEwug>IZZV)Kֶ._P%OcJ?O>/KG-~PX;u.oZ|RNuRi?P;.ɴ3|w[ji,l|Vnl3+cJlaKJR=>J?<"<֫_ύq+zOv,Ҟjst~[ӡz>AiZ\>QvTµRU>9WΞK[)r|=0Buu4v߈LJ|f?qe+%rƺ64=!J[)/ZJV+)Vi)WJR#wqyk㧑}sޚ~ _B1õ#Ɲ';wq!/ǜiYܤ3[0a=ƶ8 N%zV~wkPoxU{+#2n86>J^}7@k^_.tn/݇fmvqZ=3.ػoy ++K&F4c77C%XvE\ݕ; ]dzL}f =5{).J|J?dNl9 ۸iitL݌l\krzґ!UJx82oC#*/cd[% JJ2i+JҠ?oM"Y{2^+YgnnJJ(+Pw\x'QM`9|3\s~)Qr~!ݔ&Wc]:۹ʔ+OZ|hnᗍc˻orq,G',UO`g{€<roO:ygXczgn{YBi8RX+@2񻿹,ywm[%(`Zzʶl {{=PN_ >UQ4xWoZk(\' Vkhn?S=6]ַ:f?qu9Z5>T#(R^O owufbkwwaη\k=}nkpi-@N}|I\#k{gaw۔k[r%kZչe.T;^K #5rꮺwn#0~v=kWJz忒߽HdCDZc,bۅ{1!RiJR? w䟚kW#u?>_3?v.Je9ܹj4n ~Rk)y?)՝WzUU\y5VQ:V)r9ۄ-@S?cW -<}cw??|kz;gqr^vTa픩OI֕?? #wdO=8gJp%+ƲpӬyqd\۱?2ySJ6kJRO}Mغ=/~:ܽaY8!rc_lIF2@4 Lr #;wux[Voڝk+w%XucXF~@(8ٽ7öyFzF{\ʾB͛V+δR 49wBnX ;VpJֹu{anġƧk_'k&W*77\9[Z]˵jLvUcOcJFO7#Q_;W"/JǒNYޑ~ʬ-lI{^pܷ*NIBq+JiZVm*quϏCۇq?ounc<\z6wڻYa(GYr}V >y `i6nq.^ݟ~W _ȳnX%JQV2>?=:Zx#^,{tY)zR[:OnoןǼyF{M uk_{J`ٛX˜άaHQ+n+8 Dz1Ÿ:pn&R!vǝTnY+?2\+_ :1ZẮyիu۱r~oJV4%JJg@c^dÝ'ooKmƪ53^L`f#[gn>{aXKi6m+|~#ֹ)-.vܝ 1+Ja{*}v+xün\Kqc)Dd D  3 A?"?2F1o#;UxmE `!eF1o#;UxTT3xRkQ&Y?֏nml7Q ] &Poku!_hn-EA@/ ^z<&#m-8;{ͼ Ji_ĒJ 5/GXFˆēwyҠ,j:tb" rwa}s9d딼-s~G8~S}znZu~C? 7 &װu⣋HbGdb[˃Eca,F˴;ʤɹC2?j0ոCJ: [!;̎ԏC9V?mLvwGqZT޲*u_ꪵܪSJdXq7I\[vT ~ʵu:8@SkFીK[J/A / |?p׳˃ v9:mKQɃ3,q/:xEkYN AGuhI6X:O = {fy$1*Gb#sor I+R7:=f>0߈~h+Dd D  3 A?"?2omxcKV non `!gomxcKV nT5xRkQ&UJnE['$j+DnklnR"H؋EԫK؃ l+5ٝo|D7A$JyBț1p",-L!9nPlQQ. a@A3l `+l%-Wp._/M+Ixu=:\D4ݨ:^G(!Y1y&n8m8O*-~Is#2Nbcg S8Y=ʱ'ӰS[k7i9_5'sXxwnBAyVTe.{yJO+v.gg5KN 쬫*j_֦*K1j^w|-k^na*gYaQX oQ?k~r©|VB~,#- !&~ii]D.BҎE~]%J!`# {Їü}[/`qHYeo/yJ7&Lө6ߧU}_ಏaDd R  C .AC01_UN0001Ra;7wE` F`;7wE,Photoshop 3.08BIM,,2 http://ns.adobe.com/xap/1.0/ image/jpeg Print 2019-08-29T11:58:08+05:30 2019-08-29T06:28:10Z 2019-08-29T11:58:08+05:30 Adobe Illustrator CS6 (Windows) 256 120 JPEG /9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgAeAEAAwER AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE 1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp 0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo +DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FXYq7FXgv8Azkj+ al35Z1nyzpelSf6Va3Kavfxhqco4mKxQvT9mT4+Q9hikB7fpGqWeraVZ6pZP6lpfQx3Fu/ikqhl/ A4oReKuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2K uxV4t+YH5OeW73zLba5rkk2p32v6xDZyKzGKKCzMMgSGJUNQwWNauT13AFThV6R5D8ojyj5eTQYr yS9sbSST9HvMAJY4HPMROw2fizNQ0G1BTbArIcVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdi rsVdirsVdirsVdirsVdirsVdiqTa35x8uaLdw2eoXRS7nRpkt4opriQQoaNNIsCSGOJe8j0UeO2K pxHJHJGskbB43AZHU1BB3BBHbFUk1jznoek+Y9E8vXkjLqOvmcWIABQfV0Dt6hJHHlXim252xVPM VYp5+/v/ACt/23bb/k1NirK8VdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVd irsVdirsVdirsVeAaffeYryx/NrzBNZ2d7ZQahfWOowXRlEtzYWERRrSKSJ0Nv6cBLc6NyZtgDvi r2TyRrOla15Q0jU9IiMGm3FrGba3b7USqvD0yd6lCvGvtirwj83tb0W91PWvNdvq9nH5i8n6pY2+ iac9zEty8VgS13xgLcjzuLpg21SIfoxS+h9I1S01bSrPVLNudpfQR3EDeKSqHXp7HFDH/P39/wCV v+27bf8AJqbFWV4q7FXYq7FXYq7FXYq7FULqmqadpWnz6jqVwlpY2yGSe4lPFVUdycVYxaedfNF/ At5p3k+7ksJqtay3FzbWskkdaK5hkb1E5DcBgDTqMVVv8TeeP+pNm/6T7P8A5qxV3+JvPH/Umzf9 J9n/AM1Yq7/E3nj/AKk2b/pPs/8AmrFXf4m88f8AUmzf9J9n/wA1Yq7/ABN54/6k2b/pPs/+asVd /ibzx/1Js3/SfZ/81Yq7/E3nj/qTZv8ApPs/+asVd/ibzx/1Js3/AEn2f/NWKu/xN54/6k2b/pPs /wDmrFXf4m88f9SbN/0n2f8AzVirv8TeeP8AqTZv+k+z/wCasVRWma75rub6KC98sSWFq5PqXbXl tKEoCR8EbFjU7bYqyHFXYq7FXYq7FWB6t+WFzcN5htdL1j9G6N5rb1Nbsvq/rSiSRPSuHtZvVjWI zoAH5xyeIpirJk0N9M8tx6N5aeDSzawpBYySwG4iiVSAS0SyQF2K135/a3NehVSLSfI2s2P5e3Pl ObVLS8nnSeH6/JYusbRXTFp/Xt1uv3kkhkkJZZFFWHw7Hkqr/lr5N1nyf5dh0C91iLV7OzXjYSLa tbSopdnZZGM86uPiAWirQDv2Vb8/f3/lb/tu23/JqbFWV4q7FXYq7FXYq7FXYqlfmPzLpPl7Tzfa lIVVmEdvBGpknnlb7MUMS/FI7dgP1Yqx3S/LWr+Yr+DX/OUQiSBxLo/loMJIbUj7M1yR8M1z/wAI n7NT8WKs2xV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KsU8/f3/lb/tu2 3/JqbFWV4q7FXYq7FXYq7FUg80+b7XQ/QtIYH1HXb+q6ZpFvT1ZiNi7E7RwpWryNso8TtiqD8teT 7tNQ/wAR+Z501HzLIpWHgP8ARrCJ+sFmh6eDyn4370G2KsrxV2KuxV2KuxV2KuxV2KuxV2KuxV2K uxV2KuxV2KuxV2KuxV2KuxV2KuxVinn7+/8AK3/bdtv+TU2KsrxV2KuxV2KuxVivmTzjdRaiPLnl qBNS8zSKHkVyfqtjE3Se8ddwP5Yx8b9tt8VRXlbydaaG1xfTzPqWv39DqesTgerKR9lEA2iiToka 7D3O+KsgxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KsU8/f3/lb /tu23/JqbFWV4q7FXYq7FWFar5m1fX9Qm8v+TZFQ27+lrHmNlEkFmR9qGAH4Z7nsR9mP9rf4cVZB 5b8s6T5d0/6lp0bUdjLc3MrGSe4mb7U08p+KSRu5P6sVTXFXYq7FXYq7FXYq7FXYq7FXYq7FXYq7 FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FWKefv7/yt/wBt22/5NTYqyvFXYqtlljijeWVxHFGCzuxA VVAqSSegGKsDfUdV8/s1to00mneSwxS61lOUdzqIBo0VkdjHB1Dz9W/Y/mxVmmlaVpuk6dBp2m2y WljaoI4LeIcVVR/nue+KorFXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq 7FXYq7FXYqxTz9/f+Vv+27bf8mpsVZXiqE1bVtN0jTp9R1O5S0sbZec1xKaKo6feTsAOuKsMi03V vPrrda5DLpvk8MHtNCkqlxfAbrLfgbpEeq2/fYv/AC4qz2ONI0WONQiIAqIooABsAAMVbxV2KuxV 2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxVinn7+/8AK3/bdtv+ TU2Kpr5l8z6V5d08XmoOxaRhFaWkSmS4uJ2+xDBGN3dvD6TQYqkGk+WNW13UYfMPnJFDwN6mj+XV Ie3suvGWc/ZnuaftfZT9j+bFWa4q7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FX Yq7FXYq7FVGa+soJ7e3nuI4ri6ZktYXdVeVkUuwjUmrEKCTTtiqtirsVdirsVYT+a8+rWmlaRqGl 6XcaxdWGqwXP1G1VmdgsUoqxUNxXkw5NQ0xVIPLWpG31FvMPmLSNb1PzPKpRZl02YW1nE3WCyjb7 C/zufifv4Aqyr/lYcH/Uv67/ANw6XArv+Vhwf9S/rv8A3DpcVd/ysOD/AKl/Xf8AuHS4q7/lYcH/ AFL+u/8AcOlxV3/Kw4P+pf13/uHS4q7/AJWHB/1L+u/9w6XFXf8AKw4P+pf13/uHS4q7/lYcH/Uv 67/3DpcVY55O8/CObzCZNH1qf1NXndOFlLJ6a+lEBG38rLT7PbCrI/8AlYcH/Uv67/3DpcCu/wCV hwf9S/rv/cOlxV3/ACsOD/qX9d/7h0uKu/5WHB/1L+u/9w6XFXf8rDg/6l/Xf+4dLirv+Vhwf9S/ rv8A3DpcVd/ysOD/AKl/Xf8AuHS4q7/lYcH/AFL+u/8AcOlxVjmjefgvnTzHK2j61JG8WniOAWUr PFxSWvJP2ORNR44VZH/ysOD/AKl/Xf8AuHS4Fd/ysOD/AKl/Xf8AuHS4q7/lYcH/AFL+u/8AcOlx V3/Kw4P+pf13/uHS4qpXPny3uLaWA6F5gjEqMhkisJkdeQpyRhurDscVeFaR/wA5M+cPLOuXWh+Y 7Ya/a2c7263PD6pfURio9RQOBcbclKg1rVsU0+jfKnma38yaNDqtvZ3ljHN0t7+BreYf7E1BHgVJ GKHnl9bea9a/PS2hTUNPMPlTT5by3kNjM3pNqcno/V5B9bXlKbeKvqhgv/FeKvW8VdirsVdiqD1H WdH0z0v0lfW9l67cIPrEqRc2/lTmV5HfoMVRmKuxV2KuxV2KuxV2KuxVLtV8yeXdHkhj1bVbPTpL g0t0u54oDIelEEjLy+jFVHy7on6LbVJBOJ11S/k1BCq0CiVEUJWp5U9Priqb4q7FXYq7FXYq7FXY q7FUm0vRlg8waxrKXKzJqa20XpKP7trMSRsCwJqeTeG1MVTnFXYq7FXYqp3MTzW0sUcrQPIjIk6c S6FhQOvIMtV6iopirFPKP5T+RPKr/WNM01H1FiWk1O6JuLpmJqW9WSvEk9eFMVZfirDP+Vdyf4u1 fWhqZWw1uaxuNQsViKzs+nIFhjFyJNoCV5Onp1bccuJIKrM8VdirsVdiry/y9BbeYPzc/MW21WIX VvYWemaZaxyioS2u7eSW4QDwkk3P0Yqj/wAgdWvNU/KTy/c3kjS3CRzW5kapJS3uJIo9yTWkaKMV eg4q7FXYq7FXYq7FXYqwHXtC03Qrjzn5s8xXqX+h6rZwQtpU0K/u0hi9L0UlqzP60jfCgUfE3cmu Ksd8leYtX8h+QPJvlvXEt01/UILp4xq94bG3hiil5pDJcGK4YSiKeNVj4bUI2oMVejeUtc1PWdMk u9R039FzJPLAkQl9dJEiPETxycIuUchqUPHdaHvTFU6xV2KuxV2KuxV2KpD5q1a8iFto2kuF1zVi yWzkchbwJT6xdsO4hVxxB2aRkXvXFXmv5b+cYPKf5Q6JNcsk019qt7YQ3F/cfV4BK11cyepdXRSX gCIjVuBJYjbwVejeUPMmra2b8X2mw2cVo8aW95a3RvLW6DpzLwSmG35KvIKTx+1Udt1WRYq7FXYq 7FXYq7FXYq7FXYq7FXYqwXUfKPmjT/N2teYvKz2bSeYrOG3v4b6SSH0rq1Vo7e6jMcNx6gWN6GI8 a0+1iqeeQ/KVp5Q8o6Z5ctZDNHp8RVpm2LyyOZJXpU0DSOxArsNsVT7FXYq7FXYq7FXYq7FXm/nX QPzb1Dzbb6hog8vy6NpwV9NtNWe9YrclfiuXjgRU9RalY6s3EbijE4q6Tyf56u7HShrsWjeYnjW/ fWNKvnmNm893dCa2a2eSC5dBbR1jTkh+H4f8oKso8jeWf8OaK1gqR28Tzy3EVhBI8sFqspB9CF5A jMgNW+yu5OwGKsgxV2KuxV2KuxV2Ksa80eT7TUZpNWtYJpNcEMdtGE1bUdKieJJC/GR7Jm+z6jsP 3TVO3uFXnvk/8qfPWheWLTRrtdL1FYbxp9Qtru+vbqzv7d1uCYXt57cxW7CSZG5xoeRHJgStCqz3 yJ5Q/wAPDUZEs7XSo9RlSUaPp8rzWkLovFnjZ47ehk25BY1Gw+eKsqxV2KuxV2KuxV2KuxV//9k= xmp.iid:7299662A26CAE9118AE1F63A866DBC4B xmp.did:7299662A26CAE9118AE1F63A866DBC4B uuid:5D20892493BFDB11914A8590D31508C8 proof:pdf xmp.iid:B3A9592FE166E7119B93A2B7603E3F37 xmp.did:B3A9592FE166E7119B93A2B7603E3F37 uuid:5D20892493BFDB11914A8590D31508C8 proof:pdf saved xmp.iid:B2A9592FE166E7119B93A2B7603E3F37 2017-07-12T14:35+05:30 Adobe Illustrator CS6 (Windows) / saved xmp.iid:B3A9592FE166E7119B93A2B7603E3F37 2017-07-12T14:35:28+05:30 Adobe Illustrator CS6 (Windows) / converted from application/postscript to application/vnd.adobe.illustrator saved xmp.iid:7299662A26CAE9118AE1F63A866DBC4B 2019-08-29T11:58:08+05:30 Adobe Illustrator CS6 (Windows) / Print Adobe PDF library 10.01 AdobedC o    ! "V1A2ÔWwQ#HB$aqRC4%v38h)bSD5E79?,xu]k: @j ;܍]BI,*֞>·/ҥu\F-8_FnLOk Ug u^і84ЖhB0žY^d41*\^VӥFId%XF1_T{{&VԫI&ZB< c zrF~4,bx9o5 ^Fg[ %H/=Jn,R:MwW=zycޠo#4Jk*wiP ,mM aK>[[fudtnSyEcty6RkԒ'(L8vFP4_I}Eb: 1:xqNxԖ/ge=hM%Z|{{Jnf2 얗e:bo5|'IGB&4@^+}?cu?Ix|Ssť֌fӧǶӖ͢SObjInfoqEquation Native )_1630919756tFOle A  A M 1 err FMathType 6.0 Equation MathType EFEquation.DSMT49qB )T) DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_CompObjsuiObjInfovEquation Native )_1630919757myFAPAPAE%B_AC_A %!AHA_D_E_E_A  A M 2 err FMathType 6.0 Equation MathType EFEquation.DSMT49qB )T) DSMT6WinAllBasicCodePagesOle CompObjxziObjInfo{Equation Native )      !$'()*+,-./036789:;<=>?@BCDEFGIJKLMNOQRSTUVWXY[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Times New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  A M 3 err FMathType 6.0 Equation MathType EFEquation.DSMT49q_1630919758~FOle CompObj}iObjInfoEquation Native d_1630919759|FOle CompObji3HlqT q DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  A M 1 err )#*# e"0.1 FMathType 6.0 Equation MathType EFEquation.DSMT49q3>t5T 5 DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  A M 2 err )#*# e"0ObjInfoEquation Native Z_1630919760FOle  FMathType 6.0 Equation MathType EFEquation.DSMT49q3HldT d DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  A CompObjiObjInfoEquation Native d_1630919761FM 3 err )#*# e"0.2 FMathType 6.0 Equation MathType EFEquation.DSMT49qBh)T) DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_Ole "CompObj#iObjInfo%Equation Native &APAPAE%B_AC_A %!AHA_D_E_E_A  A M 1 err )#*# e"0.1WinAllCodePagesMalgun Gothic  A M 2 err )#*# e"0  A M 3 err )#*# e"0.2 FMathType 6.0 Equation MathType EFEquation.DSMT49qBªL)T) DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E__1630919762FOle 1CompObj2iObjInfo4Equation Native 51TablehSummaryInformation(ADocumentSummaryInformation8HA  EuclidMath1Euclid Math One!LA M 1 err )#*# e"0.1WinAllCodePagesMalgun Gothic ~ A M 2 err )#*# e"0 ~ A M 3 err )#*# e"0.2 ()Oh+'0|  8 D P\dltEditorial IntegraProceedingsTemplate.dotEditorial Integra127Microsoft Office Word@@qr@ u     :; !"#$%&'()*+,-./0123456789B<=>@ACZDEFGHXJKLMNOPQRSTUVWYe\]^_`abcdfijklmnopqrstuvwxyz{|}~,fECMjaZTS>U9i!|5 _鏭Og:-mihB)i]#i437rBȴ1^$Ú{9( gN!N*,a,!Vy%nф#Vxl&v<%S%.Oyyc-cR_uԕhPWm5EB{/o٪ՖX#lZL5mqZtЖ<8s׶'B +P o:\i{QɃqZ T-n{ZViFXDŽ*M71מ=Z][SmK3ҧwF)Ryc,*IysKnj80<|'^cfwר^~!uRO&hҫ,~y)q@_0Ŀ7ZWni,>6ﶴ;mLL&wq^hҡ^4ԨF,!ԫ7N^y7mZT]e%Ζѓp8qooo/3ףi)xF_ d?u~OH氩iy|/Q#NηMp{'I~wgwp^r6/q:UO'qRBiJJ\cChK4{O` 4*~ gNmm:TI/d,!@Tݝ%=ֻ]RSh6\%*} ?}1hnc=(~hy0:ԻSڿWS][y6O§w' pNYe8w0ɫFPr?6dKqRZ\k]Fj[ԭ¥25N%)SzÇ )(/ր?3MK,4!{xu[^+Z#m=GF1#kRy1475YO$dfЏ<#Zvӥ#S (Oչ]nFJXO]ʞz#N&(4eg :`xFc@SO5 I2S,wd+IommB8RZzrwėRb.;_"6;5hm¶?N,ХVH{%c,&p*liX 9=HÄ73K,o/+pիU4XK$: _鏭OsݭMvkKdZxԯZ0i[RZNXJrB3GЌ`4Vsev=.nIRklgԯ/2go<#dk^z#N4i3 і>I)Ӓ;c?,c=&o>?k]3j-4~S)ѷ$#Þ$3M$v=Zz~5Ic41ZԫMiOKOquj}+[FνlfVnxMZG8Fx*kNZrLL}h ~R:4URZTK՞0Yec= MnTN)b&u;,goRm=p}UVzwMmmmB8RIBz^o'~md\-uҍSWFXsCB1!$y{c-@Gw{aΘ1ޗ\Wysu^~3֫R01p&o>?w{xbt6Wq7?R[3/}V<Ɲ |ժp,B1h mtxj,VoMSi::}EN=[ǻT0)§<Jk_ti 'Kl5Ӹ+jvxl&>JtIK,!t`xFc@Sުå} MgОX)^f,d&2I0hYN#>hK-Ѹ^xO f5!=*[y*Uf<#4O$ӧN:tS*RJT%YeBd!%ѿ꿭?UqmnQ2[hm{K% U:0 NH}Y9t~fkԛԦskZi+t.ԭqJ5sFOSV|/ր&Rfꛝq7Lbin?P8ou%8I_ <)\\^Ռ&5jS08QFZ[[|jjVUf14я=^! )03Tc%)cpsttyB2WպS3w,#뚰dwJ^IDŽ9i`9^ލmi[}S5V,=j0FzI%wU%,ci&c0P1y,R-qZ׹4ЧBHԩ?,h,cIm[۷ktv%>_G5j/ѩoR1Rֽ:,N䛳{#p§VҿN:JM^*JY,ycpy8Sde(i-c4;mgkB+M%NIys4$2,фF" C ?.~{w}u|h-Koicp]\yi[[SVYIc4c f5nj9N6ڻqg=_[wSM-[K)'(2FHI'Ӹ矖P*m>즈m]/B,UR|ժr3Ԟ1o? `tYlGs@)?ܿS3<.?'MY7 e:UP;9}ػj`nX/4c_Zi'6їdf  \OFhm06 &Mɉ'd!ޜmr枇8o N>1ӏ-?BLtOЀ>8o N>1ӏ-?BLtOЀ>8o N>1ӏ-?BLtOЀ>8o N>1ӏ-?BLtOЀb> +mui|xԖ4SUhO B6ÌLtOЀ>8o N>1ӏ-?BLtOЀ>8o N>1ӏ-?BLtOЀ>8o N>1ӏ-?BLtOЀ>8o N>1ӏ-?BLtOЀzvZn[. #kJ=)[Zԫ$*Kp1aǶ3C[)}.UC> O2hF֤eNXGь~p1ӏ-?BLtOЀ>8o N>1ӏ-?BLtOЀ>8o N>1ӏ-?BLtOЀfެ Sջֻy ~K5u kop2K5Z ROvz [n>rMh #yùl^挔e2=G! +6N3zXJܕ'||yiO-48F5M,~>?@ K ktvoSqvіo;hFYya 2T-zTchFqp/L#iKj0jԌ~HO%b#|ea}-E]aub-1Wvo W%le^ϓBPxL_n/4]r158Yk)Mq1ЄьBvvoWwוk=#UԒCjK/lфöy ݜj\F <Ϩ*wX iX˹!Kke9 82ô뵺yeyJJt'*K IeY#<#~Rm?QTzbyhiڗ+RJSӍ>Kk RHUHS #,f9@amHsXjGJK/dzQWy&<#M?0xclqѩ-Qqqd%8 e0 -sFVO-31.2Ue{R1<nHKq&"3˽O/Mk[uJ^I.-puk^\jFzq%',a4|Df}lڍOVs ?{RY{\:yjOFyIG팓/0).ڎ=9lPky$;ɣ%Ui<%HK`R]uӍkR9lf>JWګpcJ1HϜK,lѸcm7{m7mn.e8g.BJT9aN!JO+& :8)te2]Kڝzy#-K,j|Ӟn? mFޥ:E7q\&#OtTN,Imq1OMbd R❵>h,gB3O4a,ʚhYa#֗Mt$q1SsS3q tmcm42KJO a@ST`zK)u~*5rpR.lr$֖Jsө,ܳ DŽaoZ%at5_䥇8pRJ+59<$cK4?#k)VBh)5jÏe<8v$/@ 3־YjEС{iyԆySb4 oZHq=I!Rz2Ǟ3I->F}ztmlNw}/->#>G-,ohfd^K/!ÖPߧlлmIlY;xb^OaFKh6=ĒyBzG6H[s&lm܌hr*YZY,-糇/ d{J!N>ր<zv񗕣 g>Y咬qP[#tKkJIX-)\RjOBkJ3QRJ֓ieXh@ mu9w{oZ7.osWi=j\&jQ^="ǽzS}zV=jk:9+eN^jq)~y)SF_᛺m/iϨަxJg$|Bu4#p,>@d ~&~B)aju-IXB.wvq[a וּlq)dQeԒ1i'a@L'BhΠؽ+Vx֫ }J,!-IJS/Ҍ~pdk]H= 1][8VmRFj]JUd1'@bA} =\֨SL%:l6ty )5j)1!Ct}XHtBꞑUWnwrR˒h73BhÖxB+ﮆp:'-7tݺvu P Z9;5f ɤx֌x/|{9l?/l޺뇫~w/WO˽/)叚OUy69n\W7ݏRr?~\w{zܝ{/wywyy9yrYWoVu?gqy߾a۹]?u3;o\J_3w:NNI{rr>n>` .Dd D  3 A?"?2 ]9;zUhrS' `!j ]9;zUhTT8xRkQflG6E[*'!$V -ng]ȗ)[ſA 'AЃ^K؃ VPpvgwޛy3'Ҿ "Io%@h 9Ck^LbI'ovҠ$NiQD:=BgD);>@spʹMuVޑ?EXc`RU|zn>h7@>.??7r&ױ ⣋S96+"̱Ƀ,yU*(&2eSś{Up5{j~wEpfukhaHc&Do S(|weVj5ԪSLdPHy趬Fczκ);:V5W ,<.'Y|PdvanP 5<\9â\ K5X)# c+|V~-#) !!h@4.Bvr !E.%Dp/`^-YCa޾nyчc0{z|lDJщĜ\jk :L=ee}|`S \.Dd D  3 A?"?2/3Hj|;_r* `!j/3Hj|;_T8xRkQfnE['MlsX &`oiu!MZ^Bz-aXiJ̷}f'Ҿ "IW &r8ނa 'Ēr[[%ɩuWzEԡ#t0$J!އ0g6e@YxGr'xErTH4@>| M`7ꡜ-; km8s6yC<6HL?),*V3E` 'qkuj7N;_5'sXSxwCt%nrUm[ Nѥ'nj4k[OU|JʽF_v{sӥS1 ^ :]TJ* [aQPn*a33? t`Y@ TBe$4!$$/ 1tPECHzm_׈"W1vsorP0p(;^bwON~4 57Q]դ̋[ :}acXլnÜ`-Dd D  3 A?"?26{֩+ B?È]q- `!i6{֩+ B?È]T7xRMkQMS$2UA-XQ7Bh &`wi_@Iٵ7? u[,Ic̽g;{$UIzG0)ĞQނa) 'r[ɩuW":C`2}s%MwA>?x:N2|zi>i7k-:/~?EeD[؍z趎ѥ`Y CFqqCЦrh`Isc2NXa5jo=FNmv㙝֩ՓWV@+'zGX ; 7|1ʏ'?UȚ\/~W5iE-zSlwMz`DDd [D  3 A?"?2saFJɏ!N0 `!saFJɏ!N@`GTtxTKkQ>NR$0G' * dVE+IxA2VAԍ|lЕ`K;@(aV L"nT̝9~ ^K"m?“t:#[rHN!JFU^%0tXoB4`X}×00w)zHrAzXW+e=Cwϑz빻|k2_w,܌;} g%U7.[J)_O#c+bFFRCp䖎m ԳAR-mz?Z%Ûtk%cDb|_ɵtXsOr¹;1QnnZ򥶋7md2Y5$xvuD"jJ EqVR\P'r!A~A}әt Jl./OBrMT"ѼFZQոV)KgV-돎m碭Ŝ9;dtݚA )|cƛvXP}[GsӹS T@N4-ɰ&pIi,FRspu(; j}!~Iώ:wxp=RuL@A£ pʋ|8P<}?L{=ػXQTx$@HiDd D  3 A?"?2iS}Y4 `!iS}Y0txTkQIm7M~tӢh[xݦ)&I4>kIJ A ?-]&JؓqfwVcط;7f|@@%9![H m`vǺ ڷGAZ@ h5KMH/xr}rAX듫ғEO+pI{ҳ|]>hU.͘9`#TżWKlbx~=f >:IgGC5w|hĩr"=ե?O$wE31"7MgG4?g,ێ!>Ë7 hWeG:rK#W}2k$ٻ⿋c<9<JX++DB״䗊f*WŜ:es tLs}Ekyy*[j>*w7bT/ &JyU.E4L3wrF;>vc3|s5 S1io:aq5fNtf2‚z[H"JhL=0u&,Bp= #d2KkeE% 20|Ņ:3ԫz\tpZUx-Cykby3!k YD K[=ڃk  ov7) ~<ͼ73o."mM cJ!|qwj8^ű]?EaJx\4sRUr #ͩBV4f utM&$z DƋlfAU(y#wЈ?^UΩ2U)cUΠ:rtRڜm 6g}I}^H qƫFXP}o/OOlL=$pÅ@jGշ O%=4Iy((H=@3jch#CK R]gLJr`kH T(AQې3p[a6UՊx '>oH\컮Dd , D  3 A?"?2;F,s; `!;F,s$uxUMlW5&h&@DH'E$R ǸRb;' 9\*N p6J==H(jo۵qHDΛof{:BDar10`)!uI-_ʗ.>XMnvnzb->w+B(21ĈnJx2<n@3rL}EI1G^Zzz۠XOKY/!лBScg؞XOK{Cuz7zy+{(ii'gUjNod?IdE7$):*q}8-@fO9 B}t&qPh^ThNF 5*eS D^4J yǮʁz?l> l;Lh?=1za5lh2RXҀ|ԖQikٛ6fTH&31-WcƳu5޵"9 #EUy;ZD0 zا?r;G. s7+GK9gKlY|o fg t>GNh_k}p"U'`UJp:-hn*={-dt_2_pffe+\7*3V7j,,fW.X؝͕82;{?YīG2XmPmQz(*jZi[15RR53߱' ]5}b%Kt`Y u pF3e4uYPfee=!>5o $z%ᛂA~JZuO; 2f]LpέxA 5\E7Z` N|'QڠPpI] 9oq}σץ}ƙ;S5Dd D   3 A ?"?2n)I ˾VoJ@ `!B)I ˾Vo `@T xV_h[Uιi{SSVfCmem'"һ4cewm MҤEOa}*:[ep{DQF >(9tk!|wADmJ0Lm[d$b U lL gҭfJtR>A t:stdoleP h%^*\G{00020430-C 0046}#2.0#0#C:\Windows\SysWOW64\e2.tlb#OLE Automation0EOfficEOficEE2DF8D04C-5BFA-101B-BDE5EAAC42Egram Files (x86)\Common \Microsoft Shared\OFFICE14\MSO.DLL#P 14.0 Ob LibrXaryNDThisDocum@entGTAisD@[cPum@9n@_ 2 HB1y-B,!%"B"+BModule1G!d!~1M 2O4O!E @ NewMa[G=wMayr s 2 MO U=ޭI K*rU~~~~~~~~~f /2Y6/O`{nq  @ A !9Qay1< (?!4xME06 LLLL*LLL<4<8<<< &`J : `TJ 0 `TJ`z $%  4``TJ  6`TJ 8@`J `J{ <(`TJ$ `J-  `J 3 ( `J 9 h `J ?  ` E `JQ h`JW h`J' `J] `Jc (` i h`Jo `Ju `xH  ` K( hhh(h `@(@ 8XH Xt @p @` pP @L @H @D @4 0`  @  @  (@   @ H  @@ (x  @p  ` @P  @ @0   0 @ H 8 `    @  @  @   @~ @x ( @L @< , @@  @ ( x Ro??@ x @t @d 8 @T (P @L @< h , @  @  s@XxHx @t @d H0 HT h(P @L @< 8, @ h @ H8d 8x G'@t @d @T 8(P @L @< , p@ X8 @ 88x p@t X@d @T 8(P @L @< , @ 8 @ 8 @8x @t @d H@T 8(P @L @< x, @ 8 @ xx G@t @d 0T P L @< H, 3@ ڎ? @ @T sx ?@t @d @T (P 0 @L pV@< K$t, T@ ( @ x tT @t @&s@d ?@T (P @L @< ? , pV@ K$t T@ (xx @t @d `@T (P @L @< , @  @ `x @t @d @T (P @L @< P, @  @ x#(n_$*\Rffff*075fb26ef9*\R0*#17*\R0*#1*\R1*#d4*\R1*#b5*\R1*#d7*\R1*#106*\R1*#c6*\R1*#d6*\R1*#129*\R1*#c1*\R1*#17b" 8I 0 I0" 08@H `p8" h8p " 8 " 8I 0 I0" 8H `p" 8 8" H8HI 0IP" X8`I 0Ix" 8I 0I" 8I 0 I0" 8IH 0`Ip"  "  @" (8I 0 I00" 88IH 0`Ip`" h8 I 0Ip" x8@I 0I" ` 0"  8IH 0`Ip" 8I 0I" 8( I 0I  "H  *X "kh 7  $              ( l8  H @   P Z3h  J3 ` P  op Article-Title *!,(.4o Author-Name *!,(.$  Affiliation *!,(.s\o8`o@oo Corresponding *!,(. Abstract *!,(. Keywords *!,(.Footnote *!,(.o`X(ohHeading1 *!,(.oHeading2 *!,(.oHeading3 *!,(.oX(Heading4 *!,(.o0hHeading5 *!,(.ooopPara *!,(.Ob+o hooo(ohoX ListBullet *!,(.C$qO ListNumbered *!,(.s@ Table title *!,(. Table foot *!,(. Fig caption *!,(.Acknowledgment *!,(.Reference title *!,(.Reference item *!,(. *%!,B@H *B@ter (j *%!,B@H *%!,B@H *B@.uk),  *%!,B@H *%!,B@H *B@chema  *%!,B@H *%!,B@H *B@ value *%!,B@H *%!,B@H *B@  *%!,B@H *%!,B@H *B@  *%!,B@H *%!,B@H *B@value= *%!,B@H *%!,B@H *B@ype>  *%!,B@H *%!,B@H *B@#& *%!,B@H *%!,B@H *B@tribut *%!,B@H *%!,B@H *B@>  *%!,B@H *%!,B@H *B@name=" *%!,B@H *%!,B@H *B@t name *%!,B@H *%!,B@H *B@reator *%!,B@HP *%!,B@H *B@ *%!,B@Ho`XEquation *!,(.H o8 *!B@Heading1 b% *!(. *!!B@ *!9d5(d9 9999999qx] *!!bk ' k=Please add conclusion or Include Conclusion In Heading1 style  ValiadtionA@d .Validation Success. No issues in this document  ValiadtionA@ 0 *!,!d Conclusion *!,!d CONCLUSION  *!,!d conclusion P ƳAttribute VB_Name = "Module1" Sub ATIT(),election.Range .StylArticle-TitlehPParagraphs(1)l: MoveRight :pEnd .Uuthor- oFFffil iaMCORRNCorresponding'&vKWDZ'Key`words?&,&ABSTNAbst0ract&&FootMnotJѡ2{a ՂHeaAO1:(2xng23ng34ng4ů5ng5ListBulle[}? ?y|n.;Pz;Numbered?_ IЉ_ _ Table_tQO H r r? ? ? ߍ? ? 8 fo]+# a       Fig_c|ap_0Up t? ? ? ? ? ? 2 Acknowledgmen_3ʬ Ref@3nc)):1_>_>_>_>b item  ______REqu"? 8 E A Valid Dim con_Ex^ As Boolean  S!cFind.CrFormattp?0AveDocu0#s("&`.Replace"With k c.Text?a2) .! ward`Tr4ueWPwdCon MatchCasaFals9Wzh WŰWPildc0 s.SoundsLik? All?1 \sQDo0 WhiEx$ec= [If InStr(#3, "pclus #") > 0 OrSelection.Range.Text, "CONCLUSION") > 0 Or InStr(conclus`Then D_Exist = True:End If!Loop If 2False  VMsgBox "Pleaadfd2 o de C Heading1 style", vbOKOnly|@Valiad"}CE;e8da Success. No issues in this document1Sub __SRP_0Z6 __SRP_1__SRP_2r__SRP_3Qq 1Y p 9 ThisDocumentModule1 NewMacrosTemplateProjectF /C:\PROGRA~2\COMMON~1\MICROS~1\VBA\VBA7\VBE7.DLLVBA A i0 F;C:\Program Files (x86)\Microsoft Office\Office14\MSWORD.OLBWord 9a@0FC:\Windows\SysWOW64\stdole2.tlbstdole Fig_caption QyPL-[DREC:\Program Files (x86)\Common Files\Microsoft Shared\OFFICE14\MSO.DLLOffice a!` APPDoubleDcol SingleColMacro22 ATITAUTITAFFCORRKWDABSTRFootParaHeading1Heading2Heading3Heading4Heading5 ListBullet ListNumbered Table_title Table_footAcknowledgmentReference_titleReference_itemEquation Validation F Fu F F Heading1k F- F F ^ F Conclusion zPlease add conclusion or Include Conclusion In Heading1 style ValiadtionVBE7.DLL ! S  \Validation Success. No issues in this documentPrU   #TemplateProject.NewMacros.APPDouble #TemplateProject.NewMacros.SingleCol !TemplateProject.NewMacros.Macro22VrU~| \rU $`a$`$`$`nrU~|   9 a  9 Q y A 0  0  0   0 `  0  __SRP_4 __SRP_5NewMacrosIThisDocument 0 @  0   0 (  0 h  0   0   0 (  0 h  0   0   0   0 h  0   0   0 (  0 h  0   h*pt$ <t p )tpkL:`NPPpt$ 4t p 0QLo4DH$ <H D )tpHD6P47Lpt$ <t p L d)tpL$pt$ <t Qp0t  0  t0 t Dt 0 ,0  0  0 H 0 ` 0 P 0 X 0 @c0~'''''' '@'`''''''4'Ppt$ <t p k~)tp6P4`@ bKxpt$ <t p  lx /x)tp[pz kz3'': N44:` NPP 6P43'': N44:`NPP 6P4(0`xtpLHDP4`@      zrU $`$`$`$`$!`$I`$q`$`$`$ `$ `$9 `$a `$ `$`$`$`$)`$Q`$y`$`$`$ `n'%# * ޭxMET@< @| valuppl s:en@\ erac(X p$ on v@ @ :sim@ a> p  x ( P`h*b@8x (@t Hp Pl Ti@h maX  H s @8 It` (( $ @  Itp`h8n_$*\Rffff*065fb26ebbN"   0 8 9<F<8A@X3Xh x  *@"p    2      $@ h        . x "     3(8 H P (`X"     "0 HX `px8op APPDouble Macro#.Width = CentimetersToPoints(16.51)Johmypar.Range.Select T!V!X Z T%\B@Bk T!^!V!l ` ` T!^!V(l1k hl *!dd *!d b%,B@f *!d *(dT *!j!lpC@n9r9tq Else' End IfEnd Ifge.SNextepos = Selection.End*8ABX If FAff = True Then spos = Selection.Start!, Exit For FAff = FalseingSelection.EndKey wdStory Selection.MoveRight00p0op SingleCol Macro *!j!lpC@n9r9tq".Width = CentimetersToPoints(7.95)Dim mypar As ParagraphDim FAff As BooleanZ) FAff = True +For Each mypar In ActiveDocument.Paragraphs If Selection.Range.Style = "Article-Title" Or Selection.Range.Style = "Author-Name" Or Selection.Range.Style = "Affiliation" Or Selection.Range.Style = "Corresponding" Or Selection.Range.Style = "Abstract" Or Selection.Range.Style = "Keywords" Then'ActiveDocument.Range(spos, epos).SelectqActiveDocument.Range(Start:=Selection.End, End:=Selection.End).InsertBreak Type:=wdSectionBreakContinuous@o Macro22 Macrol *!B@ *!!B@ *!9d5(d9 9999999q *!B@Heading1 b% *!(.dAttribute VB_Name = "NewMacros" Sub APPDouble(), X.vPr@ocDataInvoke_FuncTemplateDject..h' :'i   If ActiveWindow.View.SplitSpecial <> wdPaneNone Then9= :#s(2).CloseEnd If 5:Type6rintD7=UADocument.Range(Start:=Selion. , ] ). _+Insert@Break ^:0=wdS"Continuous qM+ 1 '*(*).&H,)With G&PageSetup.TextColumn4A.Count NubmD:=21EvenlySpacedCal.lHSSS .le`fkt&ek*}} .}ÿ}}7.95}22))t)%)7(KFt@pear*mat0`gP9<St@$bs("Hea191"TIRe celC`Ka XY\6" q) . warO\.WTwdAdoI^_MatchCasKaP_.WhYWDWild^c0 q:SidPsLik? 3All1 \>DeaExec@X=xME (SLSS<N0{00020906-0000-0000-C000-000000000046}@(%H@0n_xAttribute VB_Name = "ThisDocument" Bas0{00020P906-0C$0046} |GlobalSpacFalse dCreatablPredeclaIdTru BExposeTemplateDerivBustomizD2ID="{791C40BA-F3F1-4E7D-B885-8A3621296556}" Document=ThisDocume_VBA_PROJECT[PROJECTPROJECTwm_CompObjra @ *\G{000204EF-0000-0000-C000-000000000046}#4.1#9#C:\PROGRA~2\COMMON~1\MICROS~1\VBA\VBA7\VBE7.DLL#Visual Basic For Applications*\G{00020905-0000-0000-C000-000000000046}#8.5#0#C:\Program Files (x86)\Microsoft Office\Office14\MSWORD.OLB#Microsoft Word 14.0 Object Library*\G{00020430-0000-0000-C000-000000000046}#2.0#0#C:\Windows\SysWOW64\stdole2.tlb#OLE Automation4*\G{2DF8D04C-5BFA-101B-BDE5-00AA0044DE52}#2.5#0#C:\Program Files (x86)\Common Files\Microsoft Shared\OFFICE14\MSO.DLL#Microsoft Office 14.0 Object Library n_ThisDocument015f6f7443ThisDocument%-Module1075fb26ef9$Module14NewMacros065fb26ebb@NewMacrosޭ8X8SSήFcXF<4H BOyH GGKiGr(5 ascall=dim@doCEachDElseEElseIfOexitTFor_IfbInyloopNotOrThenwhile Wordk VBAWin16~Win32Win64xMacVBA6#VBA7#Project1  stdole` TemplateProjectE ThisDocument< _Evaluate Officeu Module1b(ATITNself SelectionZRange Stylep(AUTITuDocumentj(AFFCs(CORR (KWD (ABSTR>(FootzModule2c NewMacrosj (APPDoublemMoveUpUnitwdLineCount0vMoveDown̝HomeKeyExtend?wdExtendd ActiveWindow+ViewI SplitSpecial wdPaneNone= Panes ActivePane_ wdPrintView(ActiveDocument\Start InsertBreakѺwdSectionBreakContinuousE PageSetup TextColumnsKSetCountIp NumColumns} EvenlySpacedߠ LineBetweenlCentimetersToPointsItemz(Dcol Emyparʮ Paragraph _B_var_ForjLmyK^actr Paragraphsf _B_var_ifPFAffspos _B_var_sposepos4P _B_var_eposMoveLeftvSubSub}(Para~(Heading1U(Heading2V(Heading3W(Heading4X(Heading5Y (ListBullet5 (ListNumbered (Table_title (Table_foot  (Fig_caption(Acknowledgment(Reference_title'B(Reference_itemnwdStory& MoveRightEndKey5(Equation (SingleColj (Validation (Macro22 FindnClearFormatting)Styles p ReplacementForwardWrapWywdFindContinueBP MatchCaseMatchWholeWordXMatchWildcardsMatchSoundsLike0MatchAllWordFormsExecuteY _B_var_Do con_Exist3inst\MsgBoxRvbOKOnly`A"% 6( H  @nt/&H00000000 Module=Module1 Module=NewMacros Name="TemplateProject" HelpContextID="0" VersionCompatible32="393222000" CMG="585A902694269426942694" DPB="B0B2787B797B797B" GC="080AC0D3C1D3C12C" [Host Extender Info] &H00000001={3832D640-CF90-11CF-8E43-00A0C911005A};VBE;&H00000000 [Workspace] ThisDocument=0, 0, 0, 0, C Module1=130, 130, 957, 555, Z NewMacros=182, 182, 1009, 607, ThisDocumentThisDocumentModule1Module1NewMacrosNewMacros  F Microsoft Word 97-2003 Document MSWordDocWord.Document.89qj@ 666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ OJPJQJ_HmH @nH @sH @tH @R`R Normal d CJOJQJ_HaJmH sH tH z@z m Heading 1'$$$ dP@&a$&:@CJOJPJQJ\aJ,nHtHv@v m Heading 2 $$ & Fdx<@&*6@CJOJPJQJ\^JaJ nHtHj@j m Heading 3$ & Fd@&a$"6CJOJPJQJ\aJ nHtH~@~ m Heading 4'$$$!dx"@&`!a$*5@CJOJPJQJ\^JaJnHtHDA D Default Paragraph FontRi@R 0 Table Normal4 l4a (k ( 0No List ^o^ mHeading 1 Char*:@OJPJQJ\aJ,mH nHsH tH^o^ mHeading 2 Char*6@OJPJQJ\aJ mH nHsH tHZoZ mHeading 3 Char&6OJPJQJ\aJ mH nHsH tHbo!b mHeading 4 Char.5@CJOJPJQJ\aJmH nHsH tHbo2b 2Default 7$8$H$-B*CJOJQJ^J_HaJmH @phsH @tH RO1BR  Article-Title$a$5CJ(OJQJ\aJRO1RR  Author-Name$dhxxa$ CJOJQJFO1bF  Affiliation6CJOJQJaJTO1rT $J' Corresponding dhx6CJOJQJaJHO1H gGeFootnote xxCJOJQJ^JaJDO1D AbstractCJOJQJ\^JaJFO1F Keywordsdh6CJOJQJaJtOt Heading1d7$8$H$/5B*CJOJQJ\^JaJmH @phsH @tH @hOh Para$d7$8$H$a$)B*CJOJQJ^J aJmH @phsH @tH @vOv Heading2d7$8$H$256B*CJOJQJ\^JaJmH @phsH @tH @6O6 LHeading3d54O4 LHeading4>*CJ0O0 LHeading5 6ZOZ [N ListBullet ! & F!B*CJ^J aJmH @phsH @tH @<O"< [N ListNumbered " & FNO!2N  Table title# & F^ CJOJQJ4O1B4 Q] Table foot$CJBO1RB  Fig caption %^OJQJFOQbF *Acknowledgment &dCJRO!rR Reference title ' & F5CJOJQJFOqF Reference item($a$5CJjj m Table Grid7:V%0)@ +m0Header9*$ 9r !dx&dG$P`!a$ @CJOJPJQJaJnHtHVoV *m0 Header Char(@CJOJPJQJaJmH nHsH tHh @h -m0Footer", 9r !dxG$`! @CJOJPJQJaJnHtHVoV ,m0 Footer Char(@CJOJPJQJaJmH nHsH tHt@t m List Paragraph.$dxWD`a$ @CJOJPJQJaJnHtHbob 0m0Balloon Text Char(@CJOJPJQJaJmH nHsH tHl@l /m0 Balloon Text0$!dx`!a$ @CJOJPJQJaJnHtH6U`6 m0 Hyperlink >*B*ph^o!^ 3m0Comment Text Char$@OJPJQJaJmH nHsH tHf@2f 2m0 Comment Text3!dx`! @CJOJPJQJaJnHtHjoAj 5m0Comment Subject Char*5@OJPJQJ\aJmH nHsH tH@j@12@ 4m0Comment Subject55\p`p m No Spacing6$x`a$.56CJOJPJQJ_HaJmH nHsH tHVoqV m fontstyle01(56B*CJOJ QJ \]aJo(pho mMDPI_header_journal_logo8G$H$06B*CJOJPJQJ_HaJmH phsH tHO mMDPI_1.1_article_type9dG$H$'6B*CJOJPJQJ_H hphtH`O` ;m References :d%B*CJOJPJQJaJnHph3ftHdod :mReferences Char-B*CJOJPJQJaJmH nHph3fsH tHBoB mMTConvertedEquationCJ~O~ >mMTDisplayEquation"=$ !dx`!a$ @CJOJPJQJaJnHtHhoh =mMTDisplayEquation Char$@OJPJQJaJmH nHsH tHLOL jEquation?$dWD`a$EHPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3N)cbJ uV4(Tn 7_?m-ٛ{UBwznʜ"Z xJZp; {/<P;,)''KQk5qpN8KGbe Sd̛\17 pa>SR! 3K4'+rzQ TTIIvt]Kc⫲K#v5+|D~O@%\w_nN[L9KqgVhn R!y+Un;*&/HrT >>\ t=.Tġ S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79|s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*|fv u"xA@T_q64)kڬuV7 t '%;i9s9x,ڎ-45xd8?ǘd/Y|t &LILJ`& -Gt/PK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 0_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!0C)theme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] MNNVz]d݉ * >* * * * >+ |+ + ,,IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIL;;;;;;+=B=D=W>n>p>x>>>>>>@@@AAAAAA9BPBRBXBoBqBBBBCCCGC^C`CfC}CCCCCCCCCDDeD|D~DFFFFGGKKKKKLLLLLLLLLL M$M&MyMMMMMM<m݉:::::::::::::::::::::::::::::X'),DFL!!@ @H 0(  0(  B S  ?D _Hlk527259222 OLE_LINK123 OLE_LINK127 OLE_LINK120 OLE_LINK119 OLE_LINK130 OLE_LINK116 OLE_LINK117 OLE_LINK3 OLE_LINK4 OLE_LINK16 OLE_LINK59 OLE_LINK121 OLE_LINK14 OLE_LINK15 OLE_LINK2 OLE_LINK21 OLE_LINK24 OLE_LINK25 OLE_LINK146 OLE_LINK147 OLE_LINK148 OLE_LINK65 OLE_LINK66 OLE_LINK61 OLE_LINK62 OLE_LINK183 OLE_LINK63 OLE_LINK64 OLE_LINK135 OLE_LINK136 OLE_LINK137 OLE_LINK188 OLE_LINK140 OLE_LINK160 OLE_LINK161 OLE_LINK40 OLE_LINK131 OLE_LINK143 OLE_LINK144 OLE_LINK145 OLE_LINK201 OLE_LINK202 OLE_LINK186 OLE_LINK187 OLE_LINK214 OLE_LINK215 OLE_LINK5 OLE_LINK6 OLE_LINK218 OLE_LINK219 OLE_LINK184 OLE_LINK185 OLE_LINK133 OLE_LINK134 OLE_LINK113 OLE_LINK167_GoBack OLE_LINK69 OLE_LINK70 OLE_LINK250 OLE_LINK257 OLE_LINK258 OLE_LINK259 OLE_LINK89 OLE_LINK92 OLE_LINK109 OLE_LINK110CCee?^ K K K 9 g g y y y y A c c c ==jjk4k4445555@BGC9F9FdGdGHHwIwIJuKމ  !"#$%&'()*+,-.12/03456789:;<=>?@ABCTTTTTT!!Mw d d d F o o [ ~ ~ ~ VVDD44555555@-BGC?F?FtGtGHHIIJKމlo4?PR8AFMdo}nr)/7;T^!% t'x'e(n(s(z(q*z***S+\+a+h+4-=-B-I-#.(.t.|.W/b/i0o000Y1d1/3=3q3v3M4Q488o:s:::;;3;7;E;I;;;;;;;;<.<0<D<H<=E=F=T=a=c=A>q>r>>>>>>>>@@@@@@@@%A)AuAAAA.BSBTB{BBBBBBCC'CfCCCCCCCCCCCCCDDDEDIDSDDDDDDDDDD)E+E8Ex>? ?AA BBCCCCDD[FwFFFG'GKKqLuL?hQhRhh}mmYn[nyyMzWzXzhzQ~~Za΁ρy ]ƈۉމ3333333333333333333333333333333333333333333333366ee!!;;;;+=E=W>q>x>>>>@@AAAA9BSBXBrBBBCCfCCCCCCCDeDDFFFGKKKKKLLLLLLL M'MyMMMMNNRmZZN[y]y]z]z]~dddىމN T-R>Tl}b>u !^F^Y!5!l " F?9%POI%>S&{d`0t=d$35W&9?J"]?$ )M8cZ Mx _|NMa,k|( h@]S|(W{|BnQ\^Q`\o(Fig. .\^`\)\^`\.= \^= `\. \^ `\) \^ `\.)\^)`\.\^`\)q\^q`\.\^`\)i\^i`\) \^ `\.\^`\.U \^U `\) \^ `\. \^ `\.A\^A`\)\^`\.h^h`o()H\^H`\)\^`\.\^`\.4\^4`\) \^ `\.| \^| `\. \^ `\)\^`\.^`5OJPJQJ^Jo(()i\^i`\) \^ `\.\^`\.U \^U `\) \^ `\. \^ `\.A\^A`\)\^`\.Q\^Q`\o(Fig. .\^`\)\^`\.= \^= `\. \^ `\) \^ `\.)\^)`\.\^`\)q\^q`\.Q\^Q`\o(Fig. .\^`\)\^`\.= \^= `\. \^ `\) \^ `\.)\^)`\.\^`\)q\^q`\.e^e`o(.H\^H`\)\^`\.\^`\.4\^4`\) \^ `\.| \^| `\. \^ `\)\^`\.>^`>o(.R>^R`>o(..0^`0o(...0^`0o(.... x^x`o( ..... ^`o( ...... ^`o(.......  `^ ``o(........  `^ ``o(.........\^`\o(TABLE H\^H`\)\^`\.\^`\.4\^4`\) \^ `\.| \^| `\. \^ `\)\^`\.>^`>o(.>^`>o(..x0^x`06o(...L0^L`0o(....  0^ `0o( ..... \^\`o( ...... 0 ^0 `o(....... l `^l ``o(........ @ `^@ ``o(......... \^`\CJaJo(Fig. .i\^i`\) \^ `\.\^`\.U \^U `\) \^ `\. \^ `\.A\^A`\)\^`\.h^`OJQJo(hHh^`OJ QJ ^J o(hHohp^p`OJ QJ o(hHh@ ^@ `OJQJo(hHh^`OJ QJ ^J o(hHoh^`OJ QJ o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHohP^P`OJ QJ o(hHQ\^Q`\o(Fig. .\^`\)\^`\.= \^= `\. \^ `\) \^ `\.)\^)`\.\^`\)q\^q`\.Q\^Q`\o(Fig. .\^`\)\^`\.= \^= `\. \^ `\) \^ `\.)\^)`\.\^`\)q\^q`\.\^`\.H\^H`\)\^`\.\^`\.4\^4`\) \^ `\.| \^| `\. \^ `\)\^`\.\^`\.H\^H`\)\^`\.\^`\.4\^4`\) \^ `\.| \^| `\. \^ `\)\^`\.D\^D`\o(Fig. .\^`\) \^ `\.0 \^0 `\. \^ `\)x\^x`\.\^`\.\^`\)d\^d`\.i\^i`\o(TABLE  \^ `\)\^`\.U \^U `\. \^ `\) \^ `\.A\^A`\.\^`\)\^`\. ^`OJQJo(^`OJ QJ ^J o(o p^p`OJ QJ o( @ ^@ `OJQJo(^`OJ QJ ^J o(o ^`OJ QJ o( ^`OJQJo(^`OJ QJ ^J o(o P^P`OJ QJ o( ^ `6OJPJQJ^Jo(u()\^`\)\^`\.5\^5`\. \^ `\)} \^} `\.! \^! `\.\^`\)i\^i`\.\^`\OJQJ^Jo( H\^H`\OJ QJ o(n \^`\OJ QJ o(u \^`\OJ QJ o(l 4\^4`\OJ QJ o(n  \^ `\OJ QJ o(u | \^| `\OJ QJ o(l  \^ `\OJ QJ o(n \^`\OJ QJ o(uh 8^8`hH.h ^`hH.h  L^ `LhH.h  ^ `hH.h x^x`hH.h HL^H`LhH.h ^`hH.h ^`hH.h L^`LhH.D\^D`\o(Fig. .\^`\) \^ `\.0 \^0 `\. \^ `\)x\^x`\.\^`\.\^`\)d\^d`\.`0]S| )MT-R )MY!5!?9%x _ !W&9? )MFS&W{|$35cZ "I%?}>u|( h'WtMa^}        6.        au        n&        $ (}        $ (}                 @                ~  @ @ @ @ @ @ @ @>        RI                 n        h.                 @ @ @ @ @ @ @ @ @ޗ                V @ @ @ @ @ @ @ @        aPgYt ,, ZZ`bbVv}235Kr~b[C< oIg 7.!}%$J' ?+@ ,b.w0$2qG26nQ78/f:`<{>B?{L|LN.pN6O{P1P[TP}Q_Q{RpSO6UKX%&XlGXiC[9\V\^"_3K` c~cV,dgGeVeJwf;hiiiYijck*oKTo.p6pUVsR]sthKuz-QzYF~n L2gH^ X!+0Q23bjCBi.Ol"kQfGc n,:&WY 2>^'ny"1>[N@mKmuL DWofB9HJf *Hj/$*{*w_. 4H"^ef& MsH $ 06%-Q]1O2P3Q4R5SAGBKCHDMENGXIEKFNLPJR^T_UUVWW]FVN\TYVE,,VF,,VG,,VH,,VI,,VJ ,,VK,,VL,,VM,,VN,,VO,,VP ,,VQ ,,VR ,,VS ,,VT,VU,,VV,,VW,VX,,VY,,VZ,,V[,,V\,,V],,V^,,V_,,TemplateProject.Module1.ATITTemplateProject.Module1.AUTITTemplateProject.Module1.AFFTemplateProject.Module1.CORRTemplateProject.Module1.KWDTemplateProject.Module1.ABSTR TemplateProject.Module1.Heading1#TemplateProject.NewMacros.APPDoubleTemplateProject.NewMacros.DcolTemplateProject.Module1.Para TemplateProject.Module1.Heading3 TemplateProject.Module1.Heading2 TemplateProject.Module1.Heading5 TemplateProject.Module1.Heading4"TemplateProject.Module1.ListBullet#TemplateProject.Module1.Table_title$TemplateProject.Module1.ListNumbered#TemplateProject.Module1.Fig_caption"TemplateProject.Module1.Table_foot'TemplateProject.Module1.Reference_title&TemplateProject.Module1.AcknowledgmentTemplateProject.Module1.Foot&TemplateProject.Module1.Reference_item TemplateProject.Module1.Equation#TemplateProject.NewMacros.SingleCol"TemplateProject.Module1.Validation!TemplateProject.NewMacros.Macro22ETEMPLATEPROJECT.MODULE1.AFFFTEMPLATEPROJECT.MODULE1.KWDGTEMPLATEPROJECT.MODULE1.ATITHTEMPLATEPROJECT.MODULE1.CORRITEMPLATEPROJECT.MODULE1.FOOTJTEMPLATEPROJECT.MODULE1.PARAKTEMPLATEPROJECT.MODULE1.ABSTRLTEMPLATEPROJECT.MODULE1.AUTITMTEMPLATEPROJECT.NEWMACROS.DCOLN TEMPLATEPROJECT.MODULE1.EQUATIONO TEMPLATEPROJECT.MODULE1.HEADING1P TEMPLATEPROJECT.MODULE1.HEADING2Q TEMPLATEPROJECT.MODULE1.HEADING3R TEMPLATEPROJECT.MODULE1.HEADING4S TEMPLATEPROJECT.MODULE1.HEADING5T!TEMPLATEPROJECT.NEWMACROS.MACRO22U"TEMPLATEPROJECT.MODULE1.LISTBULLETV"TEMPLATEPROJECT.MODULE1.TABLE_FOOTW"TEMPLATEPROJECT.MODULE1.VALIDATIONX#TEMPLATEPROJECT.MODULE1.FIG_CAPTIONY#TEMPLATEPROJECT.MODULE1.TABLE_TITLEZ#TEMPLATEPROJECT.NEWMACROS.APPDOUBLE[#TEMPLATEPROJECT.NEWMACROS.SINGLECOL\$TEMPLATEPROJECT.MODULE1.LISTNUMBERED]&TEMPLATEPROJECT.MODULE1.ACKNOWLEDGMENT^&TEMPLATEPROJECT.MODULE1.REFERENCE_ITEM_'TEMPLATEPROJECT.MODULE1.REFERENCE_TITLE@JJJJ'(./34678:;<=>?ABCDEFHIKLMNPQSTVW\]istz{݉h@hh4@hh<@h h"h$hL@h(hT@h,h\@h8ht@h@h@hFh@hJhLh@hPhRhThVhXh@h\h^h@hbhdh@hhh@hlhnhph@hth@hxh@h|h@hh @h@hh@hh@hH@Unknown G.Cx Times New Roman5Symbol3. *Cx ArialA$BCambria Math7.@CalibriK@Palatino Linotype;(SimSun[SO7@Cambria Helvetica Neue LT StdHelvetica Neue LT Std=`Minion PromNimbusRomNo9L-ReguTimes New Roman?= *Cx Courier New;Wingdings"1h.yG$k{g uF uFF[n20LLMCKQHX  $P22!xx Editorial IntegraEditorial Integrah                  n _ 44bjbj,E,E .6N/N/ԪԪԪԪԪ<8[̬̬̬̬̬̬̬̬Ԫ̬̬̬̬̬ԪԪ̬̬̬̬̬̬Ԫ̬Ԫ̬̬̬̬̬̬̬]3̬̬+0[̬̬̬Ԫ̬ ̬̬̬̬̬̬̬̬̬̬̬̬[̬̬̬̬̬̬̬̬̬̬̬̬̬z : @ ,1h/ =!"#$% 666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~$OJPJQJ^J_HmH @nH @sH @tH @@@@ NormalCJ OJPJQJ^JaJ DAD Default Paragraph FontRiR 0 Table Normal4 l4a (k( 0No ListPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3N)cbJ uV4(Tn 7_?m-ٛ{UBwznʜ"Z xJZp; {/<P;,)''KQk5qpN8KGbe Sd̛\17 pa>SR! 3K4'+rzQ TTIIvt]Kc⫲K#v5+|D~O@%\w_nN[L9KqgVhn R!y+Un;*&/HrT >>\ t=.Tġ S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79|s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*|fv u"xA@T_q64)kڬuV7 t '%;i9s9x,ڎ-45xd8?ǘd/Y|t &LILJ`& -Gt/PK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 0_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!0C)theme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK]  6: gt!"(%k.7D2P@QSjUW[]|__``bcff`lpmpp.yjȁWg" |$4IKLMNOPRSTUVWXYZ[\]^_abcdefjkuwx2eqq4rEPnoǁȁ$4JQ`ghilmnopqrstv; ?hh@Unknown G.Cx Times New Roman5Symbol3. *Cx ArialA$BCambria Math7.@CalibriK@Palatino Linotype;(SimSun[SO7@Cambria Helvetica Neue LT StdHelvetica Neue LT Std=`Minion PromNimbusRomNo9L-ReguTimes New Roman?= *Cx Courier New;Wingdings"1h0@P $P2!xx